VERA Training: 3D Assemblies

VERA Training – Core Simulator February 13, 2019 VERA Users Group Meeting Oak Ridge National Laboratory

Training Objectives

Learn how to:

- Set up 3D Problems
- Set axial mesh
- Add grids, nozzles, core plates, etc.
- Set number of cores
- Add T/H Feedback with CTF
- Run Multiple Statepoints

3D Assemblies

- Setting up 3D problems is very similar to 2D problems
- Instead of a single 2D lattice, you need to define multiple 2D lattices for each unique axial "slice" of the assembly
 - Fuel Region
 - Blankets (if present)
 - Plenum
 - End Plugs
 - Gap regions
- Add top/bottom core plates and nozzles
- Add grids

All axial elevations are relative to top of lower core plate

3D Assembly Elevations

3D Core Plates and Nozzles

[ASSEMBLY]		
lower_nozzle	ss 6.053 6250.0	! mat, height, mass (g)
upper_nozzle	ss 8.827 6250.0	! mat, height, mass (g)

Different assemblies can have different nozzle descriptions

Nozzles and core plates are modeled as "smeared" materials, the material is smeared with coolant

3D Assembly Grids

Define grid types (usually inconel and zirc) and grid midpoints

[ASSEMBLY]	
! Grid types: name, mass (g), height (cm)	,
grid END inc 3.866 1017 grid MID zirc4 3.810 875	
grid_axial END 13.884 MID 75.2 MID 127.4 MID 179.6 MID 231.8 MID 284.0 MID 336.2 END 388.2	

* Note format of grid card changed in 3.7

6

3D Mesh

- The axial edit bounds set the mesh for both the axial edits and T/H coupling
- All user-specified axial boundaries in the assembly descriptions, and the grid boundaries must be included (tedious)
- The code adds planes automatically above and below the core plates.
- Typical mesh sizes range from 3-4" between spacer grids and fuel boundaries
- Meshes should also be added at burnable poison boundaries, if possible
- Thin regions (less than a few cm's) should be avoided

Parallel Decomposition

- Domain decomposition can be used to split problem up into axial and radial parallel regions
- Total number of CPU cores
 - = axial regions x radial regions
- Radial decomposition will be described in full-core section
- Axial decomposition is done by plane
- With N planes, you can assign from 1 to N CPU cores to problem

Axial Mesh

- Note that it is not always obvious how many axial planes are in the problem due to the automatic treatment of the top and bottom planes (above and below active fuel)
- Often you have to run the problem once, then look at the

e eaits.	====== Axial	Mesh Data ================	=	
	AutoMesh Method	= NONFUEL		
	Minimum Axial Mesh	= 2.000000000000		
	Maximum Axial Mesh	= 20.0000000000		
	Number of Axial Mesh	nes = 58		
	Mesh regions, starti	ing from the bottom:		
	Mesh Region	Mesh Thickness	Lower Height	Upper Height
	1	5.000000000000	0.0000000000000	5.00000000000
	2	6.053000000000	5.0000000000000	11.05300000000
	3	5.898000000000	11.05300000000	16.95100000000
	4	3.866000000000	16.95100000000	20.81700000000
	5	8.211000000000	20.81700000000	29.02800000000
	6	8.211000000000	29.02800000000	37.23900000000
	7	8.211000000000	37.239000000000	45.45000000000
	49	7.921200000000	351.02620000000	358.9474000000
	50	7.921200000000	358.9474000000	366.8686000000
	51	7.921200000000	366.86860000000	374.78980000000
	52	7.921200000000	374.78980000000	382.7110000000
	53	8.556000000000	382.71100000000	391.2670000000
58 avial planes	54	3.866000000000	391.2670000000	395.1330000000
Ju aniai pianes	55	3.578000000000	395.13300000000	398.7110000000
in problem 3a	56	3.799000000000	398.71100000000	402.5100000000
in problem 3a	57	8.827000000000	402.5100000000	411.3370000000
	58	7.600000000000	411.3370000000	418.9370000000

Load Balance

- To get the best performance, you should try to balance the computational load as evenly as possible
- Set the problem up so each core has same "load", i.e. same number of axial planes
- For fastest run-time, use one plane per core
- For less CPU usage, use two or three planes per core
- Example 58 axial planes
 - With 58 cores, there is one plane per core
 - With 29 cores, there is two planes per core
 - Using something in between (like 35) will not be any faster because some cores will have 1 plane and some cores will have 2 planes.
 - Run-time is dictated by the "slowest" core.

Setting Number of Nodes with PBS

- Computer <u>nodes</u> have multiple <u>cores</u>
- You can only request jobs with integer multiples of "nodes"
 - Lemhi has 40 cores/node (ppn processors per node)
 - Other computers might have 12 or 24 or 32
- To find number of "nodes", divide total number of cores needed by cores/node, then round up
- For example, if you need 58 cores
 - 58/32=1.8125, so request 2 nodes
 - #PBS -1 nodes=2:ppn=32
- You may run with more nodes and less cores/node if you need more memory (rarely needed)
- This is now automated, but you should be aware

Run Script automatically calculates correct number of nodes

Set Number of Cores

Set number of cores in MPACT input

[MPACT]			
num_space 58	!	Axial	decomposition

 Run script will calculate number of processors, create PBS run script (.pbs file), and submit it

Class Exercise 5: Run 3D Problem

- The 3D sample problem is "3a.inp" cp \$VERAHOME/share/VERAIn/Progression_Problems/3a.inp .
- The 3D Problems take longer to run, so you should use more cores and space decomposition than the 2D problem
- If possible, a good solution is to run one axial plane per core (or two planes per core)
- The sample input has 58 cores, but this can be changed

Copy Sample Input and Run

3D Questions for Discussion

- How do you add IFBA to 3D Problems?
 - You may need different axial zones for IFBA and/or blankets
- How do you add WABA to 3D Problems?
 - Need to add different axial zones in the INSERT block for WABA and/or blankets
 - Make sure the elevations in the INSERT block match the ASSEMBLY block
 - Add WABA axial boundaries to EDIT regions
- How do you deplete in 3D?
 - Same way as 2D

3D Assembly Output

*****	**********************
* * * * * * * * * * * * * * * * * * * *	******* STATE 0001 *********************************
* * * * * * * * * * * * * * * * * * * *	· * * * * * * * * * * * * * * * * * * *
State Summary	
Core Exposure	0.00 MWD/MTHM
Relative Power	0.00 %
Thermal Power	0.00 MWt
Relative Flow	100.00 %
Absolute Flow	21.49 kg/s
Inlet Temperature	326.85 C
Boron Conc.	1300.00 ppm
k-eff	1.17586

Runs in about 0:45 min on 58 cores, 1:15 min on 29 cores 2:17 min on 16 cores 3D Visualization will be covered in later sections

Thermal-Hydraulic Feedback

- Next step is to add T/H feedback by Coupling to CTF
- Need to define realistic conditions so flow remains subcooled
 - core power
 - inlet temperature
 - coolant flowrate
 - core pressure
- Turn on "feedback"
- Need to generate a **CTF** input deck

[STATE] power flow tinlet pressure feedback	100.0 100.0 565 F 2250 on	! % ! % ! psia
[CORE] rated 1 ⁻	7.67 0.6	823 ! MW, Mlbs/hr

Generate CTF Input Deck

- CTF needs a separate input deck that is automatically generated from the XML file
- The CTF pre-processor is run with the command: xml2ctf --xmlfile=p6.xml
- In the sample script, the CTF pre-processor is automatically called when "feedback" is turned on
- Run script will automatically do this, but you will notice some "deck.*" files in your run directory
- One drawback you cannot run more than one coupled problems in the same directory at the same time

Run Script will automatically generate CTF input files

Parallel CTF

- CTF parallel decomposition is only on the assembly or quarter-assembly level (1 or 4 or 9 cores per assembly)
- CTF cannot be split into different axial planes.
- When running CTF in parallel, the preprocessor will create many CTF input decks
 - One input deck for each assembly named "deck.N.n.inp", where "N" is the total number of assemblies and "n" is the specific assembly number.
 - One master input deck "deck.master.inp"
 - (yes, it clutters up your directory)

```
[COBRATF]
parallel 1 ! Parallel on
```

CTF cannot be run in parallel for single assembly problems

Class Exercise 6: Run Coupled Job (p6)

Create subdirectory and copy sample problem

mkdir run p6 cd run p6

Copy sample file from training directory

cp \$VERAHOME/share/VERAIn/Progression Problems/p6.inp .

Run Job

verarun p6

- Wait....
- Check queue

qstat

Copy Input file and Submit

3D Coupled Problem Output

*****	* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *	***** STATE 0001 *********************************
* * * * * * * * * * * * * * * * * * * *	***************************************
State Summary	
Core Exposure	0.00 MWD/MTHM
Relative Power	100.00 %
Thermal Power	4.42 MWt
Relative Flow	100.00 %
Absolute Flow	21.49 kg/s
Inlet Temperature	291.85 C
Boron Conc.	1300.00 ppm
k-eff	1.16483

Runs in about 5:43 min on 58 cores

(Longer run-times due to CTF not being parallel)

Submit other jobs if time permits...

- Submit IFBA or WABA jobs
- Submit 3D depletion jobs

Multiple Statepoints

- You can run multiple statepoints in a single job by specifying different [STATE] blocks
- Variables "carry-over" from previous state

[STATE]		
power	100.0	! %
flow	100.0	! %
tfuel	556 F	
tinlet	556 F	
boron	975	! ppm
[STATE]		
tinlet	564 F	! ITC ARO
tfuel	564 F	
[STATE]		
rodbank	D 0	
boron	902	! ppm
tinlet	556.0	
tfuel	556	
[STATE]		
tinlet	564	
tfuel	564	! ITC Bank D inserted

Multiple Statepoints (2)

 For compact input, you can also use semicolons to separate variables

[STATE]	power	48.7;	deplete	EFPD	6.43	
[STATE]	power	98.7;	deplete	EFPD	24.54	
[STATE]	power	62.8;	deplete	EFPD	31.07	
[STATE]	power	99.8;	deplete	EFPD	36.13	
[STATE]	power	100.0;	deplete	EFPD	51.86	
[STATE]	power	93.8;	deplete	EFPD	79.07	
[STATE]	power	99.6;	deplete	EFPD	110.64	
[STATE]	power	98.9;	deplete	EFPD	137.00	
[STATE]	power	35.5;	deplete	EFPD	137.50	
[STATE]	power	35.5;	deplete	EFPD	138.58	
[STATE]	power	80.0;	deplete	EFPD	144.18	
[STATE]	power	99.7;	deplete	EFPD	155.65	
[STATE]	power	99.3;	deplete	EFPD	180.05	
[STATE]	power	99.9;	deplete	EFPD	208.66	
[STATE]	power	99.5;	deplete	EFPD	235.09	
[STATE]	power	99.9;	deplete	EFPD	265.81	
[STATE]	power	99.8;	deplete	EFPD	295.96	
[STATE]	power	0.1;	deplete	EFPD	304.00	

A DOE Energy Innovation Hub www.casl.gov

