VERA Training: Single Assembly Examples

VERA Training – Core Simulator February 13, 2019 VERA Users Group Meeting Oak Ridge National Laboratory

Training Objectives

- Learn location of documentation and sample problems
- Work through several single-assembly examples in detail
 - 2D Single Assembly
 - IFBA, inserts, depletion
- Learn how to use job submission queue
- Learn about other features
 - Depletion
 - Restart files

Code Licenses

- VERA is export controlled software
- Everybody with access to the VERA code (source) and/or executables) must have a valid software license
- You are responsible to not allow anybody else to get access to the codes

Has everybody signed the **VERA User Agreement?**

Lemhi

- Lehmi is the HPC cluster at INL where we will be running jobs
 - hpclogin.inl.gov is the login node (must log in here first)
 - lemhi1.hpc.inl.gov
 - lemhi2.hpc.inl.gov
- This training assumes that users already have an account on Lemhi and can log in using ssh or some other remote access client
 - Instructions to run a sample problem were sent out before training started

Location of Documentation

• For simplification, set the following Unix variable to the VERA source location:

export VERAHOME=
/projects/vera-users-grp/VERA builds lemhi/builds/VERA 4.0RC3

- General documentation:
- MPACT documentation:
- CTF documentation:
- VERAIn documentation:

- \$VERAHOME/share
 - \$VERAHOME/share/MPACT
 - \$VERAHOME/share/COBRA-TF
- \$VERAHOME/share/VERAIn
- Sample Problems: \$VERAHOME/share/VERAIn/Progression Problems
- VERAIn Input Manual

\$VERAHOME/share/VERAIn/doc/verain_UM.pdf
(can also be downloaded from Github verain_UM.pdf)

Background: CASL Progression Problems

- #1 2D HZP Pin Cell
- #2 2D HZP Lattice
- #3 3D HZP Assembly
- #4 HZP 3x3 Assembly CRD Worth
- #5 Physical Reactor Zero Power Physics Tests (ZPPT)
- #6 HFP BOL Assembly
- #7 HFP BOC Physical Reactor
- #8 Physical Reactor Startup Flux Maps
- #9 Physical Reactor Depletion
- #10 Physical Reactor Refueling

- During CASL development, we used a set of "Progression Problems" to guide development.
- The nomenclature is still used in a lot of CASL documents
- For example, the case "P9" refers to "Problem 9", a full-core depletion
- "P2" is a 2D single assembly
- All progression problems are included in the VERAIn repository

More information on the progression problems can be found in the report: http://www.casl.gov/sites/default/files/docs/CASL-U-2012-0131-004.pdf

VERA Input

- We've already covered the basics of the VERA input in the last training module.
- The VERA input is ASCII input arranged in "blocks".
- Copy the 2D example file from the sample directory into a local directory:

mkdir run-vera

cd run-vera

cp \$VERAHOME/share/VERAIn/Progression_Problems/2a.inp .

VERARUN

- New Program developed in VERA 4.0 to run jobs: verarun[job]
- No longer need to write your own PBS scripts
- For list of advanced options, type "verarun" with no command line options
- Optional: set environment variable to turn on e-mail notifications

export PBS EMAIL=USER@ornl.gov

• Optional: set run-time limits in new [RUN] block

[RUN] walltime 0.1 ! hours

2D Assembly Input (1)

[CASEID] title '(CASL Problem	2A'
[CORE] size 2 apitch 2 height 2 rated 0	1 ! 21.50 ! 1.0 ! 0.04832 0.01	Single assembly Assembly pitch Core height ! Rated power and flow
core_sha 1	ape !	Shape of core
assm_mag ASSY	p !	Map of assemblies
bc_rad bc_top bc_bot b	reflecting reflecting reflecting	Boundary conditions

- CASEID is a header block that contains a title
- The core is defined as a single assembly named "ASSY"
- The rated power and flow are arbitrary since there is no feedback

Single assembly problem is set up as a core with a one assembly

2D Assembly Input (2)

```
[ASSEMBLY]
 npin
        17
                  ! Number of rods across
 ppitch 1.26
                  ! Pin pitch
! 3.1% enriched fuel
 fuel U31 10.257 94.5 / 3.1
! Default materials for "he" and "zirc4"
 cell 1 0.4096 0.418 0.475 / U31 he zirc4
 cell 2
                0.561 0.602 / mod zirc4
 lattice LAT
   2
   1 1
   1 1 1
   2 1 1 2
     1 1 1 1
     1 1 1 1 2
     1 1 2 1 1 1
       1 1 1 1 1 1
     1 1 1 1 1 1 1 1
 axial ASSY 0.0 LAT 1.0
```

- Single 2D lattice
- "axial" card defines the assembly, but it is only one lattice 1 cm tall
- Cell names are "1" and "2"
- Lattice name is "LAT"
- Assembly name is "ASSY"

2D Assembly Input (3)

[STATE]		
power	0.0	! Percent power %
tinlet	565 K	
boron	1300	! ppm
sym	qtr	
! Followin	g parameters	s are only used
! With no	feedback	
tfuel	565 K	
modden	0.743	! g/cc
feedback	off	

- STATE block sets the current reactor conditions
 - power (%)
 - Inlet temperature _
 - Boron
 - Symmetry
- With no feedback, you also need to specify
 - Fuel temperature
 - Moderator density

2D Assembly Input (4)

[MPACT]	
[SHIFT] num_cycles num_inactive_cycles Np	1100 100 1000000

- Uses default MPACT values
- SHIFT options (and other code blocks) can be included in input, but they are ignored

Run Case

1. Copy input file and script into local directory

cp \$VERAHOME/share/VERAIn/Progression Problems/2a.inp .

2. Run

verarun 2a

3. Look for "k-eff" in summary file

Create Input, Run Case

VERA Output

VERA creates the following output files:

- \$CASE.xml the VERAIn parsed input to the codes
- \$CASE.log a record of the MPACT information echoed to the screen during the run
- \$CASE.out MPACT output file
- \$CASE.sum Statepoint summary
- \$CASE.h5 a standard hdf5 formatted file containing results for VERAView (binary file)
- other files used for scripting

Examine output file and confirm we get the correct answers!

2D Assembly Summary File

Runs in about 30 seconds

Results for Vera 4.0 Results in previous versions may have included resonance upscatter models

Class Exercise 1: Add Gad

- Start with the input deck "2a.inp"
- Gadolinia is an integral burnable absorber that is part of the fuel
- Convert input deck to include gad rods
 - Include 12 gad rods as shown in map below (location X)
 - Gad fuel is enriched to 1.8% U-235 and 5% gadolinia

Gad Input Solution

```
[ASSEMBLY]
 fuel u31 10.257 94.5 / 3.1
 fuel g18 10.111 94.5 / 1.8 / gad=5.0
 cell 1 0.4096 0.418 0.475 / U31 he zirc4
 cell X 0.4096 0.418 0.475 / g18 he zirc4
 cell O
                0.561 0.602 / mod zirc4
 lattice LAT
   2
   1 1
   1 1 1
   2 1 1 2
   1 1 X 1 1
   1 1 1 1 1 2
     1 1 2 1 1 X
   1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1
```

Needed:

- "gad" is a material name that is already defined on library
- New fuel name "g18" with gad
- New rod definition with gad fuel
- New lattice map showing gad rods

Need to define a second fuel for gad pins and a second cell type that uses the gad fuel

17

Gad Output in Summary File

*****	**********************				
* * * * * * * * * * * * * * * * * * * *	**************************************				
* * * * * * * * * * * * * * * * * * * *	***************************************				
State Summary					
Core Exposure	0.00 MWD/MTHM				
Relative Power	0.00 %				
Thermal Power	0.00 MWt				
Relative Flow	100.00 %				
Absolute Flow	0.31 kg/s				
Inlet Temperature	291.85 C				
Boron Conc.	1300.00 ppm				
k-eff	1.05140				

Eigenvalue much lower than case 2A (1.18228) Gad rods have very low power (in VERAView) Runs in about 40 seconds

Results should be very similar to Progression Problem 20

Notes on Gad depletion

- Gadolinia is a very black absorber and tends to burn like an "onion skin".
- Therefore, you need to use 10 depletion rings to get good results with gad pins instead of the default 3 rings.
- The code will automatically use 10 depletion rings in fuel rods with gadolinia

```
[MPACT]
mesh cell gad 10 1 1 / 10*8 8 8 8
! Number of rings and azimuthal
! divisions in each region
! One additional azimuthal for coolant
```

In older versions of VERA, the user had to manually increase the number of rings in the gad fuel

Class Exercise 2: Add WABA

- Start with the base input deck "2a.inp"
- WABA are discrete burnable absorber rods that are placed in guide tubes (like control rods)
- Convert input deck to include 12 WABA rods
 - Need to add INSERT block and core map
 - WABA materials are mod/zirc4/he/waba/he/zirc4
 - WABA radii are 0.286 0.339 0.353 0.404 0.418 0.484
 - 12 WABA rods (need map)

mat waba 3.65 b4c 0.0949 al2o3 0.9051

Create Input, Run Parser

WABA Input Solution

<pre>[INSERT] npin 17 mat waba 3.65 b4c 0.0949 al2o3 0.9051 cell 1 0.286 0.339 0.353 0.404 0.418 0. mod zirc4 he waba he zirc4 rodmap LAT12</pre>	<pre>INSERT] npin 17 mat waba 3.65 b4c 0.0949</pre>		
axial 12WABA 0.0 LAT12 1.0	[CORE] assm_ ASS inser 12W	map Y t_map ABA	

WABA Output

******	*****	******	*****************		
******	**************************************				
******	* * * * * * * * * * * * * * * * * * * *	******			
St	tate Summary				
Сс	ore Exposure	0.00	MWD/MTHM		
Re	elative Power	0.00	e e e e e e e e e e e e e e e e e e e		
Th	nermal Power	0.00	MWt		
Re	elative Flow	100.00	e e e e e e e e e e e e e e e e e e e		
Ab	osolute Flow	0.31	kg/s		
Ir	nlet Temperature	291.85	C		
Bo	oron Conc.	1300.00	ppm		
k-	-eff	1.075	518		

Eigenvalue lower than case 2a, but higher than 2a-gad Pin powers are lower around WABA rods (VERAView) Runs in about 38 seconds

Class Exercise 3: Add IFBA

- Start with the base input deck "2a.inp"
- IFBA is a very layer of ZrB on outside of fuel rods
- Convert input deck to include 80 IFBA rods
 - Need IFBA composition
 - Need IFBA thickness and density (need to preserve total loading)
 - Recommend thickness 0.001 cm, define density to preserve loading
 - 80 IFBA rods (need map)

mat	ifba	3.85	zr-90	0.412271
			zr-91	0.090907
			zr-92	0.140481
			zr-94	0.145466
			zr-96	0.023935
			b-10	0.09347
			b-11	0.09347

2									
Х	1								
1	1	Х							
2	Х	1	2						
Х	1	1	Х	1					
1	1	1	Х	Х	2				
2	Х	1	2	Х	1	Х			
Х	1	1	Х	1	1	1	1		
1	1	1	1	1	1	1	1	Х	

Create Input, Run Parser

IFBA Input Solution

ASSEMBLY] npin 17 ppitch 1.26	
<pre>mat ifba 3.85 zr-90 zr-91 zr-92 zr-94 zr-96 b-10 b-11</pre>	0.412271 0.090907 0.140481 0.145466 0.023935 0.09347 0.09347
fuel U31 10.257 94.5	/ 3.1 u-234=0.026347
<pre>cell 1 0.4096 cell X 0.4096 0.4106 cell 2 lattice LAT 2 X 1 1 1 X 2 X 1 2 X 1 1 X 1 1 1 X X 2</pre>	0.418 0.475 / U31 he zirc4 0.418 0.475 / U31 ifba he zirc4 0.561 0.602 / mod zirc4
2 X 1 2 X 1 X X 1 1 X 1 1 1 1 1 1 1 1 1 1 1 X	
axial ASSY 0.0 LAT	1.0

Need:

- Add IFBA material
- Add new cell card with IFBA layer on outside of fuel
- Add IFBA rod locations to lattice map

IFBA Output

State Summary					
Core Exposure	0.00	MWD/MTHM			
Relative Power	0.00	8			
Thermal Power	0.00	MWt			
Relative Flow	100.00	8			
Absolute Flow	0.31	kg/s			
Inlet Temperature	291.85	C			
Boron Conc.	1300.00	ppm			
k-eff	1.022	25			

Eigenvalue lower than case 2a and 2a-gad Use VERAView to see low power rods Runs in about 30 seconds

Notes on IFBA Ray Spacing

 IFBA is a very small geometric ring, so it has been found that you need a smaller ray spacing to get accurate results

- May cause significant increase in run-time
- Makes a big difference for single assembly problems, but results in a full-core are not as sensitive. User should use their own judgement.

Default	0.050	k-eff	1.02225	0:31 min
ray_spacing	0.005	k-eff	1.02068	2:50 min
ray_spacing	0.001	k-eff	1.02062	13:10 min

Class Exercise 4: Depletion

- For depletion, we need to set the correct power level (you can't deplete at zero power)
- In CORE block, confirm that the rated power should be 0.04832 MW for a single assembly 1 cm tall
- In STATE block, set the instantaneous power to 100%
- A more realistic fuel temperature is 900 K
- Depletion is performed with a single input

deplete [unit] [step(s)]

 Units can be EFPD, GWDMT, or hours

Create Input, Run Parser

[STATE]	
power 100.0	! 00
deplete EFPD 0	10 20 40 60
tfuel 900 K	
[CORE] rated 0.04832	0.01 ! MW

Depletion Output

======================================											
N	exposure	exposure	eigenvalue	2PIN	3EXP						
1	0.0000	0.00	1.172147	1.0515	0.0000						
2	0.3841	10.00	1.128630	1.0525	0.4040						
3	0.7682	20.00	1.124366	1.0527	0.8083						
4	1.5363	40.00	1.118837	1.0527	1.6169						
5	2.3045	60.00	1.112637	1.0526	2.4255						

Output from a post processing code reading HDF file

Runs in about 2.5 min

Depletion Step Shortcut

 Long depletion cards can be entered with a shortcut list generator

- where
 - "n" is the beginning step
 - "m" is the ending step
 - "d" is the step size
- Examples:

deplete GWDMT 0 0.1 0.5 <1..20x1> deplete GWDMT <20..60x5> deplete EFPD <0..300x10> 305 308

 List expansion is done in the input parser, so the XML file will include all depletion steps

Restart Files

- Restart file can be used to save statepoint data and then restart the case later
- Important for long-running jobs and core shuffles
- Write a restart file:

restart_write FILE LABEL

• Read a restart file:

restart read FILE LABEL

- FILE is the filename of a binary restart file
- LABEL is an arbitrary user-defined string

Restart Examples

Write a restart file in one input deck:

```
[STATE]
 deplete GWDMT 0 0.1 0.5 1 2 4 6 8
 restart write cycle4.res EXP8
[STATE]
 power 99.0
 deplete GWDMT 10 12 14 16 18 20
 restart write cycle4.res EXP20
```

Read restart file in another input deck:

```
[STATE]
 restart read cycle4.res EXP8
 power 25.0
```

You still need all the other geometry input (CORE, ASSEMBLY, INSERT, etc.) when reading restart files

Restart File Rules

- Restart files are HDF files, but not VERAout files (you can't view them in VERAView)
- You can have multiple statepoints per restart file, they just need to have unique labels
- Restart file ONLY contains isotopic data and [STATE] data
 - User needs to include all other blocks (ASSEMBLY, CORE, etc.) in the input deck that reads the restart file
 - This behavior may be removed in future code versions
- Restart file is written for the last exposure if a "deplete" card is use with multiple exposures
- Restart file can be used to expand/contract from full-core to qtr-core symmetry

Class Exercise 5: Restart Files

- Start with the depletion test case
- Write a restart file at the last exposure step

Create Files and Submit Job

- Create another input file to read the restart file
 - Remember that you still need to include CORE and ASSEMBLY data

Create Files and Submit Job

• Do the answers agree?

Thermal Expansion (TE)

- TE can have significant effect on corner pin powers due to increased assembly gap size
- TE is performed once at beginning of calculation
 - We do not perform coupled thermo-mechanics
 - This is a small approximation because largest TE effect is from hot to cold, local temperature effects are smaller.
 - TE is assumed to be unconstrained
- TE temperatures must be specified beforehand. Set to average values
- Run script automatically performs TE

[STATE]		
thexp	on	
thexp_tmod	585	K
thexp_tclad	600	K
thexp_tfuel	900	K

Thermal Expansion (TE) Caveats

- 3D TE is available, but not recommended
 - Most of the TE effect is 2D from the core plate expansion
- User can input different TE temperatures for HZP and HFP
- User can <u>not</u> change TE temperatures AND do axial re-mesh at the same time
 - more details in full-core discussion

Thermal Expansion Demonstration

- Problem 2A with fuel temperature increased to 900K
- Pin Power differences (%) (TE on TE off)

2.29	1.50	1.12	0.95	0.80	0.74	0.72	0.78	0.87	0.78	0.72	0.74	0.80	0.95	1.12	1.50	2.29
1.50	0.52	0.44	0.36	0.20	0.02	-0.03	0.06	-0.11	0.06	-0.03	0.02	0.20	0.36	0.44	0.52	1.50
1.12	0.44	0.04	-0.17	-0.33		-0.28	-0.34		-0.34	-0.28		-0.33	-0.17	0.04	0.44	1.12
0.95	0.36	-0.17		-0.46	-0.47	-0.59	-0.53	-0.61	-0.53	-0.59	-0.47	-0.46		-0.17	0.36	0.95
0.80	0.20	-0.33	-0.46	-0.59	-0.57	-0.58	-0.61	-0.64	-0.61	-0.58	-0.57	-0.59	-0.46	-0.33	0.20	0.80
0.74	0.02		-0.47	-0.57		-0.66	-0.78		-0.78	-0.66		-0.57	-0.47		0.02	0.74
0.72	-0.03	-0.28	-0.59	-0.58	-0.66	-0.78	-0.75	-0.72	-0.75	-0.78	-0.66	-0.58	-0.59	-0.28	-0.03	0.72
0.78	0.06	-0.34	-0.53	-0.61	-0.78	-0.75	-0.74	-0.61	-0.74	-0.75	-0.78	-0.61	-0.53	-0.34	0.06	0.78
0.87	-0.11		-0.61	-0.64		-0.72	-0.61		-0.61	-0.72		-0.64	-0.61		-0.11	0.87
0.78	0.06	-0.34	-0.53	-0.61	-0.78	-0.75	-0.74	-0.61	-0.74	-0.75	-0.78	-0.61	-0.53	-0.34	0.06	0.78
0.72	-0.03	-0.28	-0.59	-0.58	-0.66	-0.78	-0.75	-0.72	-0.75	-0.78	-0.66	-0.58	-0.59	-0.28	-0.03	0.72
0.74	0.02		-0.47	-0.57		-0.66	-0.78		-0.78	-0.66		-0.57	-0.47		0.02	0.74
0.80	0.20	-0.33	-0.46	-0.59	-0.57	-0.58	-0.61	-0.64	-0.61	-0.58	-0.57	-0.59	-0.46	-0.33	0.20	0.80
0.95	0.36	-0.17		-0.46	-0.47	-0.59	-0.53	-0.61	-0.53	-0.59	-0.47	-0.46		-0.17	0.36	0.95
1.12	0.44	0.04	-0.17	-0.33		-0.28	-0.34		-0.34	-0.28		-0.33	-0.17	0.04	0.44	1.12
1.50	0.52	0.44	0.36	0.20	0.02	-0.03	0.06	-0.11	0.06	-0.03	0.02	0.20	0.36	0.44	0.52	1.50
2.29	1.50	1.12	0.95	0.80	0.74	0.72	0.78	0.87	0.78	0.72	0.74	0.80	0.95	1.12	1.50	2.29

Reactivity worth of TE = -49 pcm

• In the next training section we will set up and run **3D** Problems

A DOE Energy Innovation Hub www.casl.gov

