Shift – Hybrid Monte Carlo Particle Transport

Kat Royston, ORNL Thomas Evans, ORNL Eva Davidson, ORNL Tara Pandya, ORNL

February 11, 2019

VERA Workshop

- Review of computational transport methods
- Shift Monte Carlo Code •
- Hybrid transport methods
- Shift capabilities in VERA •
- Conclusions and future development

Computational transport methods

Deterministic methods

- Solve the Boltzmann transport equation for average particle behavior in a *discretized system* _
- Produce system-wide solutions with detailed information throughout problem space —
- Computationally inexpensive _
- Accuracy limited by discretization approximations _

Fixed source form of the transport equation:

$$\hat{\boldsymbol{\Omega}} \cdot \nabla \psi(\mathbf{r}, \hat{\boldsymbol{\Omega}}, E) + \sigma(\mathbf{r}, E) \psi(\mathbf{r}, \hat{\boldsymbol{\Omega}}, E) = \int dE' \int_{4\pi} d\hat{\boldsymbol{\Omega}}' \, \sigma_{\rm s}(\mathbf{r}, \hat{\boldsymbol{\Omega}}' \cdot \boldsymbol{\Omega}, E' \to E) \psi(\mathbf{r}, \hat{\boldsymbol{\Omega}}', E') + \frac{1}{4\pi} q_{\rm e}(\mathbf{r}, \hat{\boldsymbol{\Omega}}, E)$$

Computational transport methods

Deterministic methods

- Solve the Boltzmann transport equation for average particle behavior in a discretized system
- Produce system-wide solutions with detailed information throughout problem space
- Computationally inexpensive
- Accuracy limited by discretization approximations

Stochastic or "Monte Carlo" methods

- Simulate individual particles and infer average particle behavior from the average behavior of the simulated particles
- Tally results in pre-determined regions of problem space
- Computationally expensive
- Accuracy limited only by the physics, geometry and material approximations used

- 1. Sample starting neutron
- 2. Sample distance to collision
- 3. Calculate distance to boundary
- 4. Move particle
- 5. Accumulate state data
- 6. Repeat 2 5

Computational transport methods

Deterministic methods

- Solve the Boltzmann transport equation for average particle behavior in a discretized system
- Produce system-wide solutions with detailed information throughout problem space
- Computationally inexpensive
- Accuracy limited by discretization approximations

Stochastic or "Monte Carlo" methods

- Simulate individual particles and infer average particle behavior from the average behavior of the simulated particles
- Tally results in pre-determined regions of problem space
- Computationally expensive
- Accuracy limited only by the physics, geometry and material approximations used

Hybrid methods

- Use fast, approximate deterministic simulations to speed-up highly accurate Monte Carlo simulations
 - Calculate 3D adjoint (importance) and/or forward functions with deterministic simulations
 - Calculate variance reduction (VR) parameters based on deterministic solutions
 - Utilize VR parameters to focus the Monte Carlo simulation on "important" particles
- Automate above steps

Shift Monte Carlo Code

Shift is part of the Exnihilo code suite

- Provide a parallel, component library for transport application development on HPC platforms
- Provide pre- and post-processing tools integrated with *Jupyter notebook*
- Flexible & scalable by design; deployed for multiple applications
- Monte Carlo and deterministic transport solvers in a single code system
- Internal GitLab code repository and issue tracking: https://code-int.ornl.gov/exnihilo/Exnihilo

Denovo	Deterministic solvers, including S_N and SP_N
Shift	Monte Carlo solver (multiple physics and geometry options)
Insilico	Neutronics front-end for reactor physics (CASL) – employs Shift or Denovo solvers
Omnibus	General front-end for solving radiation transport problems

The Exnihilo Code Suite

Exnihilo Team

HPC Methods and Applications Team

Elliott Biondo Greg Davidson Tom Evans (lead) Steven Hamilton Seth Johnson Tara Pandya Kat Royston Reactor and Nuclear Systems Division

> Kursat Bekar Cihangir Celik Eva Davidson Rob Lefebvre

Developed using Agile, Continuous-Integration workflow

- 1,177 individual unit tests checked on merge
- Acceptance and runtime performance tests run weekly

Language	Executable	Test	
C++	274,648	279,170	
Python	30,543	19,569	
CUDA	12,356	8,804	
С	1,555	—	
Fortran	934	55	
-		The Consortium for Ad	

Denovo Deterministic Transport Code

- 2- and 3-D Cartesian brick mesh with automatic discretization of Shift-compatible geometry inputs
- S_N and SP_N angular discretizations (Level symmetric, Gauss-Legendre Product, Quadruple Range quadratures)
- Spatial discretizations (weighted-diamond, theta-weighted diamond, step-characteristic, and more)
- KBA parallel decomposition, multi-set energy decomposition
 - Maximize parallelism on 100K CPUs
 - Parallel GPU implementation
- Advanced Krylov solvers
 - State-of-the-art numerical methods
 - Fast within-group, multigroup, and eigenvalue solutions
- Automatic multigroup cross section generation
 - Built-in SCALE cross section processing
 - Cross section mixing for discretized cells that contain multiple materials

Shift Monte Carlo Transport Code

- Flexible, high-performance Monte Carlo radiation transport *framework*
- Multiple front-ends
 - Omnibus: Fully featured general front-end

- SCALE: Integrated into CSAS, TRITON, and MAVRIC
- Insilico: Integrated into VERA for in-core and ex-core analyses
- Shift is physics and geometry agnostic
 - Physics engines: SCALE CE and MG
 - Geometry engines: Exnihilo RTK, MCNP, GG (KENO/SCALE), DAGMC CAD
- Fixed-source and eigenvalue solvers
- State-of-the-art methods, algorithms, and implementations
 - GPU implementation for CE physics with reactor geometry
 - Hybrid MC/deterministic methods
- Shift is designed to scale from supercomputers to laptops

Tallies in Shift

- Shift supports a wide range of tallies, including reactions, cells/unions, meshes, energy, and diagnostic (e.g., source and Shannon entropy)
- Scalable tallies
 - Tally system designed to scale ~O(1) with number of tally cells (as opposed to O(N))
 - Tallies use hash table lookup instead of linear searches over number of tally cells/regions

Time per history for a geometry containing 262,144 unique cells with energy-integrated flux tallies in randomly selected cells

11

Spatial domain decomposition

tion Shit

12

Multi-Set Overlapping Domain (MSOD)

- Spread the problem across multiple "blocks" if memory usage is too high for a single processor
- Amortizes load balancing cost of DD
- Enables high-fidelity simulations on the largest computers

On-the-Fly Doppler Broadening

- Traditional method: obtain $\sigma(E,T)$ by interpolating between data on a temperature grid
 - Many grid points required, large memory requirements _
 - Interpolated $\sigma(E,T)$ is approximate
- Pole Method:
 - Formulate cross section in terms of poles (p), residues (r), and temperature (T) for on-the-fly evaluation:

$$\sigma(E, T) = \frac{1}{E} \sum_{j} Re \left[\frac{1}{2\sqrt{E}} \sqrt{\pi} r_{j} W \left(\frac{\sqrt{E} - p_{j}}{2\sqrt{\frac{k_{B}T}{4A}}} \right) \right]$$

$$W(\mathbf{Q}) : \text{Eaddeeva function}$$

Windowed pole method only analytically calculates contributions from poles within a window of energies and fits a curve for contributions outside the window

Accuracy of windowed multipole method relative to reference data.

Shift V&V (CASL-U-2016-1186-000)

- Small critical problems (BW1484, BW1810)
- LWR full-core and pincell problems (WEC AP1000[®], Watts Bar Unit 1 startup, KRSKO)
- Coupled (n, g) problems
- Fixed-source gamma transport problem (CACTF)
- Depletion/burnup problems (AP1000[®] lattices)
- Performance benchmarks (OECD NEA, WEC AP1000[®])

gad 100 fuel4 90 80 inc 70 mod 60 air 50 fuel 0 10 20 30 40 50 60

BW1810 Core XIV

Shift Applications: High Flux Isotope Reactor (HFIR)

- ORNL Research Reactor Division
- Parallel depletion/activation
 - Full cycle analysis time reduced from ~8 days to ~8 hours
 - Uses MCNP geometry, supports in-memory geometry changes
 - Advanced diagnostic tools for geometry debugging
- RB19J Gd-shielded experiment shield lifetime analysis
 - ~3700 depletion zones
 - Calculations performed on ORNL's Panacea cluster
 - 56 or 64 nodes (20 cores/node)
 - 28 time steps
 - ~2.5 3.5 hrs per HFIR full-cycle calculation

Shift Applications: DOE Exascale Computing Project

- Established to accelerate development of a capable exascale computing system
- Use highest resolution models to provide benchmark data sets for multi-cycle SMR operation
 - 10 year target:
 2025 operational deployment
- Couple MC neutronics to multiphase CFD:
 - Shift-MC (ORNL) + Nek5000 (ANL
- Demonstrated results at Petascale
 - Coupled multi-cycle simulations are an exascale problem

16

Shift Applications: *Transatomic Power MSR Reactor Physics Calculations*

Power and flux distributions obtained from Monte Carlo mesh tallies

Tritium generation rates and core vessel metrics help identify potential operational issues

Figures provided by Ben Betzler

Hybrid methods make Monte Carlo more efficient

- Analog Monte Carlo convergence can be prohibitively slow, especially in large, shielded systems
- Advanced variance reduction techniques are necessary to generate Monte Carlo results with acceptable statistical errors
- These methods seek to increase the figure of merit: FOM = $\frac{1}{R^2T}$

Hybrid methods enable Monte Carlo solutions on problems that were previously considered impossible

Consider a single response that we want to tally:

$$R = \int_{V} \int_{0}^{\infty} \sigma_{d}(\vec{\mathbf{r}}, E) \int_{4\pi} \psi(\vec{\mathbf{r}}, E, \widehat{\mathbf{\Omega}}) d\widehat{\mathbf{\Omega}} \, dE \, dV = \langle \psi, \sigma_{d} \rangle$$
scalar known response function
response (e.g., detector cross section)

where the angular flux ψ is the solution of the transport equation (subject to boundary condition on ∂V):

$$H\psi(\vec{\mathbf{r}}, E, \widehat{\mathbf{\Omega}}) = q(\vec{\mathbf{r}}, E, \widehat{\mathbf{\Omega}}) \begin{bmatrix} \text{known, fixed} \\ \text{source} \end{bmatrix}$$
$$H = \widehat{\mathbf{\Omega}} \cdot \vec{\nabla} + \sigma(\vec{\mathbf{r}}, E) - \iint d\widehat{\mathbf{\Omega}}' dE' \sigma_s(\vec{\mathbf{r}}, E', \widehat{\mathbf{\Omega}}' \to E, \widehat{\mathbf{\Omega}})$$

Slide from Scott Mosher, ADVANTG lead developer

The solution of the adjoint transport equation is an *importance function* or *map*:

Slide from Scott Mosher, ADVANTG lead developer

How can we use this *importance function* to accelerate a Monte Carlo simulation?

Weight Window Technique

Figures provided by Scott Mosher, ADVANTG lead developer

How can we use this *importance function* to accelerate a Monte Carlo simulation?

Figures provided by Scott Mosher, ADVANTG lead developer

How hybrid variance reduction methods work

Monte Carlo accuracy at deterministic speeds

The CADIS Method

Consistent Adjoint-Driven Importance Sampling (CADIS)

- Solve the adjoint transport equation with a fast deterministic • simulation, using the detector response as the adjoint source
- Estimate the detector response

$$\mathcal{R} = \iint q(\mathbf{r}, E) \phi^{\dagger} \, d\mathbf{r} dE$$

Calculate consistently biased source

$$\hat{q}(\mathbf{r}, E) = \frac{q(\mathbf{r}, E)\phi^{\dagger}(\mathbf{r}, E)}{\mathcal{R}}$$

Conserve particle weights

$$w\hat{q} = w_o q$$
 $w = \frac{\mathcal{R}}{\phi^{\dagger}(\mathbf{r}, E)}$

Calculate weight windows

$$w = \frac{1}{2}(w_L + w_U) \quad w_L = \frac{2\mathcal{R}}{(1+c)\phi^{\dagger}(\mathbf{r}, E)}$$

J. C. Wagner and A. Haghighat, "Automated Variance Reduction of Monte Carlo Shielding Calculations Using the Discrete Ordinates Adjoint Function," Nuclear Science and Engineering, **128**, 186-208 (1998).

The FW-CADIS Method

Forward Weighted CADIS

- Optimize variance reduction parameters for multiple tallies or a mesh tally
- Solve the forward transport equation with a deterministic simulation to estimate the responses
- Construct an adjoint source at all detector locations and weight it with the response estimate σ^i

$$q_i^{\dagger} = \frac{\sigma_d^{\iota}}{R_i}$$

• Continue with the CADIS procedure

J.C. Wagner, D.E. Peplow, and S.W. Mosher, "FW-CADIS Method for Global and Regional Variance Reduction of Monte Carlo Radiation Transport Calculations," *Nuclear Science and Engineering*, **176**, 37-57 (2014).

Shift Capabilities in VERA

Shift Capabilities in VERA

- Shift is coupled to MPACT-CTF in VERA for validation and excore calculations
- Shift and MPACT-CTF run on their own separate sets of processors
- Shift capabilities through VERA include:
 - Automatically generating a detailed geometric core model
 - Running in eigenvalue, forward, and CADIS (using S_N adjoint) modes
 - Vessel fluence: tallying energy-binned flux in user-defined azimuthally divided rings and writing to HDF5 output at each state point through standard VERA input
 - Through a *supplemental* Omnibus input:
 - Inserting a detailed core model into a broader user-defined excore model
 - Obtaining excore tallies for any user-defined unknowns in the excore geometry with the requested tally output for each state point to HDF5

Shift coupling in VERA

Receive in-core isotopics, temperatures, and densities at first state point

The user can define coupling to determine what Shift receives from MPACT-CTF. Currently, memory consumption limits the ability to couple at each state point for large problems.

VERA with Shift handles the intricate core details automatically

Full core Watts Bar model: (4x2) power range detectors, 2 source range detectors, 2 dual surveillance capsules and 2 single surveillance capsules

The core model is defined in the VERA input

- The core and physics parameters can be inserted into a larger model that includes excore features
- VERA couples Shift with MPACT-CTF
 - Fission source, isotopics, densities, and temperatures can be automatically transferred from MPACT-CTF calculation
 - Coupling requires no direct user-intervention

Shift Execution Modes in VERA

In-core analysis

- *k*-eigenvalue
- Reactor core model completely specified by VERA input
- Automated tallies:
 - Pin powers
 - Shannon entropy

Ex-core analysis

- Fixed-source
 - Uses fission source from VERA-CS
 - Hybrid methods (optional)
- In-core model generated from VERA input
- Supplemental *Omnibus* input allows user description of geometry outside of core barrel and user-defined tallies

Shift Variance Reduction in VERA

- For excore calculations, Shift can perform the simulation in forward or CADIS (Consistent Adjoint-Driven Importance Sampling) mode
- CADIS mode:
 - Runs the Denovo deterministic transport code to solve for the adjoint across the problem space
 - Creates weight windows and consistently biased source
 - Optimizes for vessel fluence or a user-defined tally in the excore geometry specified via a separate *Omnibus* input
- Shift can output the adjoint flux, adjoint source, and weight windows for the first state point

Shift Variance Reduction in VERA

Plots produced using Shift python post-processing tools

Shift Variance Reduction in VERA

 10^{-1}

 10^{-2}

 10^{-3}

10-4

10-

10⁻⁶

10-7

Adjoint function for Watts Bar

Source region importance for Watts Bar over all axial locations (adjoint flux folded with the fission source for first depletion state)

Plots produced using Shift python post-processing tools

Shift excore capabilities with VERA

- CADIS implementation
 - Consistent source biasing
 - Full or separable weight windows
 - Excore mesh size parameter selection
 - Optimize for user defined excore tallies
- Fission source spectrum used by Shift
 - ²³⁵U Watt spectrum
 - MPACT 51-group fission spectrum

35

Shift excore capabilities with VERA

- Excore geometry options
 - Using the supplemental *Omnibus* input file, the user can define:
 - A detailed geometric model of features outside the core
 - Excore tallies
 - Always use core out to barrel from VERA input
 - Option to pull in up to outer vessel from VERA input
- Shift passes the results of tallies specified in the *Omnibus* excore input back to MPACT at each state point

Excore modeling with VERA and Omnibus

Quarter core model: power range detector and coupons (Co, Cu, Fe) in the single surveillance capsule

Materials with Watts Bar Core (XY slice @ Z=200 cm)

Generated by Eva Davidson

Excore modeling with VERA and Omnibus

Full core model: (4x2) power range detectors, 2 source range detectors, 2 dual surveillance capsules and 2 single surveillance capsules

Materials with Watts Bar Core (XY slice @ Z=200 cm)

Double surveillance capsule NE quadrant

Double surveillance capsule _____SW quadrant _____

Single surveillance capsule NW quadrant

Single surveillance capsule SE quadrant

Different colors are different geometric cell definitions

Generated by Eva Davidson

Excore Detector Response: Harris PWR

- Excore detector modeled with Omnibus
- Varied moderator and downcomer density and examined relative detector response

Integrated in-core and ex-core Harris Model

Work done by Eva Davidson and Herschel Smith

Adjoint function

Excore Detector Response: Harris PWR

Work done by Eva Davidson and Herschel Smith

Excore Detector Response: Harris PWR

All calculations run on ORNL's Panacea cluster with 738 cores (338 MPACT, 400 Shift)

Case	Forward Mode			CADIS Mode			FOM
	Rel. Error	Time (min)	FOM	Rel. Error	Time (min)	FOM	Ratio
shqca1	4%	145.6	0.17	1%	4.5	35.7	216
shqca3	5%	143.8	0.14	1%	4.6	30.5	216
shqca5	5%	142.0	0.14	1%	3.8	47.4	337
shqca7	6%	140.5	0.12	1%	5.3	20.1	166
shqca9	12%	139.0	0.06	1%	3.9	42.2	708
shqca11	6%	137.9	0.11	1%	4.2	37.6	327

Work done by Eva Davidson and Herschel Smith

Vessel Fluence Calculation: Watts Bar Unit 1

- Simulated 15 cycles of Watts Bar Unit 1 using VERA
- Typical core follow simulations with BOC fuel shuffle, HFP cycle depletion using MPACT, CTF, and ORIGEN
- Vessel fluence calculated from Shift vessel flux (Neutron flux > 1 MeV)

Source Range Detector Response Validation

- Latest VERA methods used to predict detector signals outside of the pressure vessel in Watts Bar Unit 1
- Conditions difficult to predict with industry codes: partially-loaded, subcritical cores with secondary neutron sources
- Excellent agreement between calculations and measurements: -0.3±3.9% over ~17,000 measured points averaged over 140 total intervals (8 fuel cycles)
- Publicly available report delivered to DOE headquarters on Dec. 31, 2018

RNSD Contributors:

Ben Collins, Eva Davidson, Cole Gentry, Andrew Godfrey, Germina Ilas, Tara Pandya, Katherine Royston, and many others

Adjoint Flux Calculated by Shift for Source Range Detectors (Image by Eva Davidson)

Detector Response Results for Cycle 10 Refueling

43

Conclusions

- Shift is a flexible, high-performance Monte Carlo radiation transport *framework*
 - Multiple front-ends
 - Physics and geometry agnostic
- Shift implements advance variance reduction techniques
 - Denovo deterministic transport code calculates adjoint and/or forward solution
 - Generates weight windows and a consistently biased source —
 - Focuses the Monte Carlo simulation on "important" particles
- In VERA, Shift is coupled with MPACT-CTF for in-core and ex-core analyses
 - Detailed in-core model created from VERA input
 - Fission source, isotopics, densities, and temperatures automatically _ transferred
 - Optional Omnibus input allows for modeling ex-core details and tallies
 - CADIS mode allows for significant improvement in performance

Future development

- Performance optimization:
 - Full isotopic, temperature coupling in core (reduce CE data memory usage)
 - Multithreading to allow more efficient use of node-based shared memory
 - Method of Poles for on-the-fly Doppler broading (ECP)
 - Smaller memory footprint required for CE data (GB to MB)
 - More computational cost (1.2 2x)
 - Domain Decomposition to enable machine scaling to arbitrary-sized problems
- User interface updates
 - Add basic excore detector specification to VERA input
 - Simple detectors outside the vessel
 - Will not require user to create supplemental Omnibus file
 - Automate excore post-processing utilities
 - Allow weight windows and biased source to be calculated at user selected state points during multicycle calculations
- Visualization: extend VERAView capabilities to plot fission source and pin importances for vessel fluence calculations

www.casl.gov