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MAMBA: Advanced 3D Chemistry & CRUD

• Surface chemistry modeling of CRUD
• Microstructural chemistry and heat 

transfer
• Boron uptake and dissolution in the 

CRUD layer
• CFD-Informed Subchannel

– Mapping of CFD to CTF for resolved flow
– High-resolution prediction of threshold physics

• Source-terms
– Metal ion pickup throughout primary loop
– Calibration based on plant measurements

• Fully integrated in VERA for direct 
effect on power distributions

Simulated CRUD buildup

In Watts Bar 1 Cycle 7
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MAMBA: Conceptual Model

• Crud is a porous structure with chimneys
– Focus on a single unit cell with chimney 

surrounded by porous structure
• Mechanics

– Coolant water flows into porous structure and 
carries along soluble components in water

– Particulates from water deposit on surface 
growing crud layer 

– Water boils inside the crud layer and vapor 
escapes through chimney

– Boiling water leaves soluble components behind
– With sufficient concentration soluble components 

precipitate out

Vapor out of 
chimney

Coolant water 
into crud
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MAMBA Conceptual Design
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Coolant Thermodynamics

• Several soluble and solid phase species
– Borate species – 𝐵𝐵 𝑂𝑂𝑂𝑂 3,𝐵𝐵 𝑂𝑂𝑂𝑂 4

−,𝐵𝐵2𝑂𝑂 𝑂𝑂𝑂𝑂 5
−,𝐵𝐵3𝑂𝑂3 𝑂𝑂𝑂𝑂 4

−

– Lithium species – 𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂, 𝐿𝐿𝐿𝐿+

– Water and hydrogen dissolution species – 𝑂𝑂2𝑂𝑂,𝑂𝑂𝑂𝑂−,𝑂𝑂+,𝑂𝑂2
– Iron ionic species – 𝐹𝐹𝑒𝑒2+,𝐹𝐹𝑒𝑒 𝑂𝑂𝑂𝑂 2

– Nickel ionic species – 𝑁𝑁𝐿𝐿2+,𝑁𝑁𝐿𝐿 𝑂𝑂𝑂𝑂 2

– Solid species – 𝑁𝑁𝐿𝐿𝐹𝐹𝑒𝑒2𝑂𝑂4, 𝐿𝐿𝐿𝐿2𝐵𝐵4𝑂𝑂7
• Solve borate, lithium, and hydrogen equilibrium first
• Use solution to determine iron and nickel including 

nickel ferrite precipitation parameter
• Lastly determine lithium tetraborate precipitation 

parameter
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Surface Kinetics

• Crud surface is only nickel ferrite growth

• qs,boil modified to include surface boiling by CTF and chimney 
boiling (enhances crud growth on “clean” surfaces)

• Analytic solution to the ODE describes the growth of the crud
• Crud is grown at a fixed porosity (70%) until a node is full

𝒅𝒅𝑪𝑪𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒
𝒅𝒅𝒅𝒅

= �𝒌𝒌𝒔𝒔,𝒏𝒏𝒏𝒏𝒏𝒏−𝒃𝒃𝒏𝒏𝑵𝑵𝒃𝒃
𝒑𝒑 + 𝒌𝒌𝒔𝒔,𝒃𝒃𝒏𝒏𝑵𝑵𝒃𝒃

𝒑𝒑 𝒒𝒒𝒔𝒔,𝒃𝒃𝒏𝒏𝑵𝑵𝒃𝒃
′′ �𝑪𝑪𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒,𝒄𝒄𝒏𝒏𝒏𝒏𝒃𝒃

𝒑𝒑 − 𝜸𝜸𝒔𝒔,𝒆𝒆𝒌𝒌𝑻𝑻𝑻𝑻𝑻𝑻. 

Time 
rate change

Non-boiling 
deposition rate

Boiling 
deposition rate

Errosion
rate
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Internal Kinetics

• Nickel ferrite forms if concentration of Ni and Fe are sufficiently 
high

• Porosity, 𝜂𝜂, changes with 𝑁𝑁𝐿𝐿𝐹𝐹𝑒𝑒2𝑂𝑂4

• Similar form for Ni, NiO, Magnetite, and Bonaccordite has recently 
been implemented

𝒅𝒅𝑪𝑪𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒
𝒅𝒅𝒅𝒅

= �𝒌𝒌𝑵𝑵𝜼𝜼�𝑪𝑪𝑵𝑵𝑵𝑵𝒔𝒔𝑪𝑪𝑵𝑵𝒆𝒆𝒔𝒔
𝟐𝟐 − 𝒑𝒑𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒𝑪𝑪𝒄𝒄𝒏𝒏𝒏𝒏𝒃𝒃

𝟑𝟑 �        𝑪𝑪𝑵𝑵𝑵𝑵𝒔𝒔𝑪𝑪𝑵𝑵𝒆𝒆𝒔𝒔
𝟐𝟐 > 𝒑𝒑𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒𝑪𝑪𝒄𝒄𝒏𝒏𝒏𝒏𝒃𝒃

𝟑𝟑

𝟎𝟎
, 

𝒅𝒅𝜼𝜼
𝒅𝒅𝒅𝒅

= −
𝑴𝑴𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒
𝝆𝝆𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒

𝒅𝒅𝑪𝑪𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒
𝒅𝒅𝒅𝒅

. 
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MAMBA Internal Kinetics

• Mechanistic species transport model is developed which captures the 
convection and diffusion through the porous crud structure 
– Species convects in through the porous region
– Concentration is increased through coolant boiling into the chimney
– Species diffuses back out to the coolant
– Included liquid carryover fraction in chimney region

• Lithium tetraborate is handled after the fact by checking lithium 
and boron concentrations:
– If precipitation occurs, the remaining porosity is filled to 99%

𝑪𝑪𝑩𝑩𝟒𝟒𝑪𝑪𝑳𝑳𝑵𝑵𝟐𝟐 > 𝒑𝒑𝑳𝑳𝑵𝑵𝟐𝟐𝑩𝑩𝟒𝟒𝑶𝑶𝟕𝟕𝑪𝑪𝒄𝒄𝒏𝒏𝒏𝒏𝒃𝒃
𝟔𝟔 , 
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Heat conduction

• Heat conduction in the crud is driven by the significant heat sink 
caused by boiling

• Current implementation is a steady-state, 1D model for every axial 
and azimuthal region

𝛁𝛁 ∙ 𝒌𝒌𝛁𝛁𝛁𝛁 = 𝐪𝐪𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬′′′ , 

𝐪𝐪𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬′′′ = �𝟐𝟐𝟐𝟐𝒓𝒓𝒄𝒄𝒄𝒄𝑵𝑵𝒄𝒄𝝁𝝁(𝜼𝜼) 𝒄𝒄𝒄𝒄𝒄𝒄𝑵𝑵𝒄𝒄𝝆𝝆𝒄𝒄𝒄𝒄𝑵𝑵𝒄𝒄(𝑻𝑻 − 𝑻𝑻𝒔𝒔𝒔𝒔𝒅𝒅)      𝑻𝑻 > 𝑻𝑻𝒔𝒔𝒔𝒔𝒅𝒅
𝟎𝟎

, 
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Modeling CRUD requires tight coupling to other 
components of VERA

Single capability to handle CIPS and CILC

CFDhi2low

Mass 
Balance

Coolant 
Concentrations

CRUD Mass

hi2low
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Improvements to VERA for CRUD Simulations

• Multicycle capability
– Shuffle CRUD built in on previous assemblies
– Remove CRUD due to thermal/mechanical/chemical shock and ultrasonic cleaning

• Improved coupling
– Boron-10 depletion in CRUD layer
– Better model for energy balance at CRUD-Coolant interface

• Improve mass balance
– User specified alloy, surface area, etc. for steam generator and piping
– Simplified Lithium program input
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ROTHCON: Improving Resolution with CFD Data

• Develop heat transfer and 
turbulent kinetic energy multiplier 
maps as function of rod surface 
location and grid geometry

• Add capability in CTF to create a 
refined coupling mesh for 
MAMBA coupling

𝑀𝑀 𝑧𝑧 − 𝑧𝑧𝑔𝑔,𝜃𝜃 =
𝑁𝑁𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑧𝑧 − 𝑧𝑧𝑔𝑔,𝜃𝜃
𝑁𝑁𝑢𝑢𝑏𝑏𝑏𝑏𝑔𝑔𝑏𝑏 𝑧𝑧 − 𝑧𝑧𝑔𝑔

• Develop CFD models to 
generate data for reconstruction

Example of HTC rod surface data map developed 
by STAR-CCM+ and read by CTF
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Crud/Corrosion ROTHCON sensitivity

1x1 mesh refinement 4x4 mesh refinement 8x8 mesh refinement

• Localized corrosion becomes thicker for higher levels of coupling mesh 
refinement

• Rod 22 surface corrosion behavior shown for different refinement levels 
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System mass balance model improves crud deposition 
models

Cold Leg: 
304SS, ~290C

Steam Generator: 
Alloy 600/690, 
330C (Inlet) to 
290C (Outlet)

Core: Contains fuel 
rods with sub-cooled 

boiling, removing 
particulates

Hot Leg: 
304SS, 
~330C
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CILC screening capability demonstration

Oxidation model 
integrated with CTF

ROTHCON method reconstructs Star-CCM+ solution onto CTF mesh

• CILC screening tool using MAMBA, CTF 
informed by STAR-CCM+, and clad/oxidation 
model

Seabrook Cycle 5 Demonstration

1x1 mesh 4x4 mesh 8x8 mesh
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CIPS simulation capability for Watts Bar Unit 1 Cycle 6 
and 7 
• CIPS hand calibration for WB1C7 and the 

application of calibrated parameters for WB1C6

WB1C6 Axial Offset

WB1C7 Axial Offset

WB1C7 Crud Thickness
WB1C7 Precipitate Thickness
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Path towards CRUD predictions with UQ
Calibration with uncertainty

Watts Bar Catabwa Vogtle

Cycle 4

5

6

7

Cycle 7

8

9

10

Cycle 9

10

11

12

𝜸𝜸𝒔𝒔𝒓𝒓𝒄𝒄,𝒘𝒘𝒃𝒃 𝜸𝜸𝒔𝒔𝒓𝒓𝒄𝒄,𝒄𝒄 𝜸𝜸𝒔𝒔𝒓𝒓𝒄𝒄,𝒗𝒗

MAMBA

𝒌𝒌𝒔𝒔𝒏𝒏𝒃𝒃 𝒄𝒄𝒃𝒃𝒏𝒏𝑵𝑵𝒃𝒃 𝑨𝑨𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐𝑶𝑶𝟒𝟒,𝑵𝑵𝒏𝒏 𝜶𝜶𝒄𝒄𝒄𝒄𝑵𝑵𝒄𝒄 ….

Walt Loop
CRUD Scrapes

Flux Maps

• Bayesian calibration will be performed 
with all available data

• Joint milestones with VVI, FMC, PHI, 
and AMA to calibrate CRUD capability
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www.casl.gov

http://www.casl.gov/
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