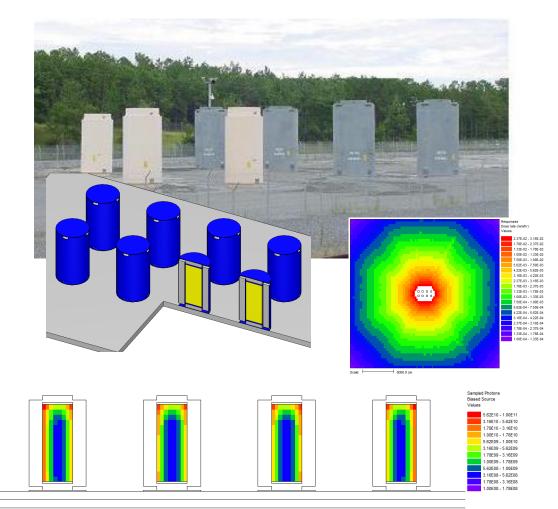


ORIGEN Isotopic Depletion and Decay

Presented to: VERA Workshop

Presented by: William Wieselquist Director, SCALE Code System Reactor and Nuclear Systems Division Oak Ridge National Laboratory


February 11, 2019

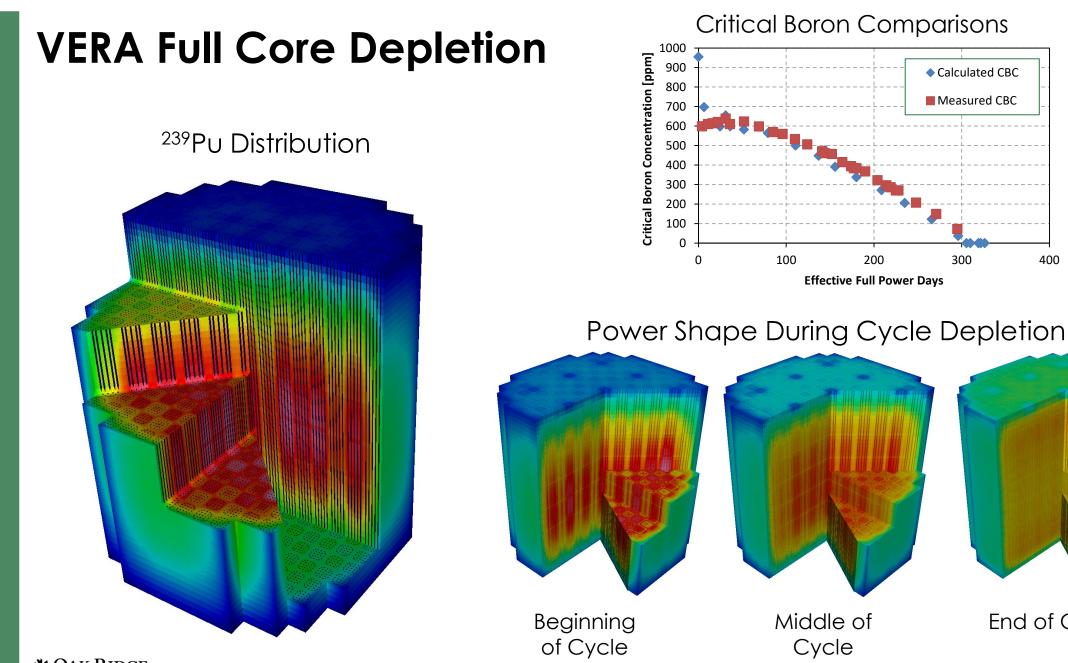
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Key ORIGEN Capabilities

- Calculation of isotopics and source terms
 - Nuclide concentrations (atoms and mass)
 - Activities
 - Decay heat
 - Radiation emission rates and spectra (neutron and gamma)
 - Radiotoxicity
- Application Environments
 - Depletion/decay in operating reactors
 - Spent fuel storage/handling
 - Structural material activation (in-core, ex-core)
 - Fuel cycle analysis (Material feed and removal processing)

Within SCALE: ORIGEN calculates spent fuel gamma emissions and links to MAVRIC to calculate dose at pad or site boundary.

ORIGEN Strategy


SCALE

- general applications
 - 2237 isotopes
 - 54000 transitions between isotopes
 - all pathways in modern nuclear data for neutron transmutation, fission, and decay
 - all nuclides with half-lives > 1 ms
- Runtime **50-100 ms** per time step solve

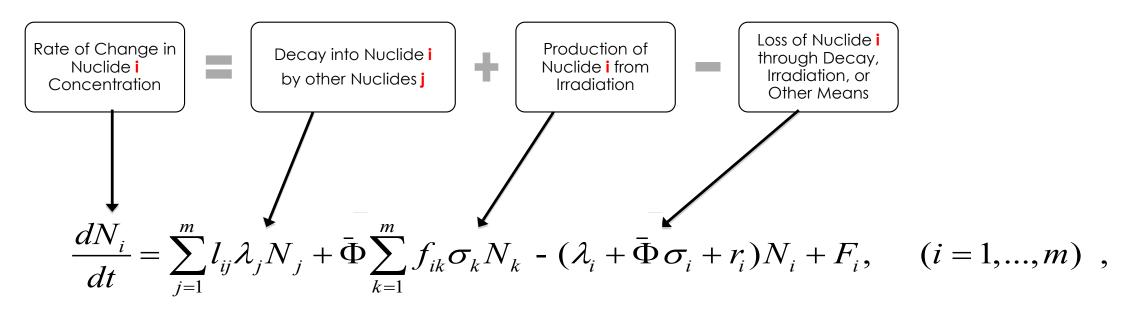
VERA

- LWR-specific applications
 - ~300 isotopes
 - ~8000 transitions between isotopes
 - Significant factor of ~8 memory savings (2237->300)
- Runtime ~10 ms per time step solve
- Millions of depletion zones in VERA full core simulations
 - 3 radial zones * 50 axial zones per fuel rod
 - ~50,000 rods in core

300

400

End of Cycle


CAK RIDGE National Laboratory

ORIGEN Methods (1/4) Mathematical Model

• General expression solved for production and loss rate of a nuclide

• Translated into a system of Ordinary Differential Equations (ODEs)

ORIGEN Methods (2/4) Matrix Exponential Form of the Solution

• The transmutation equation can be written in matrix form as

$$\frac{d\vec{N}}{dt} = A\vec{N}(t), \quad \text{with given initial condition } \vec{N}(0)$$

• The matrix exponential solution is given as

$$\vec{N}(t) = \exp(At)\vec{N}(0)$$

where

 $\vec{N}(0)$ is a vector of initial isotopics

A is an *m* x *m* transition matrix containing rate coefficients for radioactive decay, neutron capture, fission, etc.

ORIGEN Methods (3/4)

Solver Kernel 1: Hybrid Matrix Exponential/Linear chains

• Exponential matrix exp(At) can be represented as a series expansion

$$\exp(At) = \sum_{n=0}^{\infty} \frac{(At)^n}{n!}$$

 But short lived transitions (e.g. large decay constant) are difficult to solve due to round off

e.g. $e^{-100} = 1 - 100 + 100^2/2! - 100^3/3! + ... = 3.72 \times 10^{-44}$

 To prevent loss of numerical accuracy, short-lived nuclides for a specific time step are removed from the exponential matrix treatment and resolved using Bateman linear chains

$$N_{i} = N_{i}(0)e^{-d_{i}t} + \sum_{k=1}^{i-1} N_{k}(0) \prod_{n=k}^{i-1} \frac{a_{n+1,n}}{d_{n}} \left[\sum_{j=k}^{i-1} d_{j} \frac{e^{-d_{j}t} - e^{-d_{i}t}}{(d_{i} - d_{j})} \prod_{\substack{n=k\\n\neq j}}^{i-1} \frac{d_{n}}{d_{n} - d_{j}} \right],$$

ORIGEN Methods (4/4) Solver Kernel 2: Chebyshev Rational Approximation Method

 Matrix exponential method based on Chebyshev rational approximation of the exponential function

$$\exp(At) = a_0 + 2Re\left[\sum_{i=1}^{k/2} a_i (At + \theta_i I)^{-1}\right] \qquad \vec{N}(t) = \exp(At)\vec{N}(0)$$

- Fast and accurate, able to handle large systems of nuclides
- Overall accuracy almost independent of step lengths
- Adjoint solution implemented (Annals of Nuclear Energy 85, p.68, 2015)

ORIGEN Nuclear Data

Decay data (ENDF/B-VII.1)

- ~2600 decay transitions allowed with T $^{1\!/_{2}}$ (> 1 ms)
- Decay branching fractions β⁻, β⁺, EC, a, IT, β⁻β⁻, β⁻n, SF, n, β⁻a
- Transitions to ground and excited states
- Recoverable energy from decay (a, β , γ)
- Neutron reaction cross section data (JEFF-3.1/A)
 - ~800 nuclides (ENDF/B has ~400)
 - ~13000 neutron-induced reactions
 - Expanded reaction types supported (ENDF/B in red)

(n,2n), (n,3n), (n,f), (n,na), (n,n3a), (n,2na), (n,3n a), (n,np), (n,n2a), (n,2n2a), (n,nd), (n,nt), (n,n ³He), (n,nd2a), (n,nt2a), (n,4n), (n,g), (n,p), (n,d), (n,t), (n,³He), (n,a), (n,2a), (n,3a), (n,2p), (n,pa), (n,t2a), (n,d2a), (n,n')

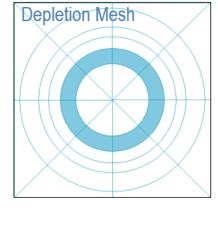
- Isomeric transitions, e.g. Am-241 -> Am-242m

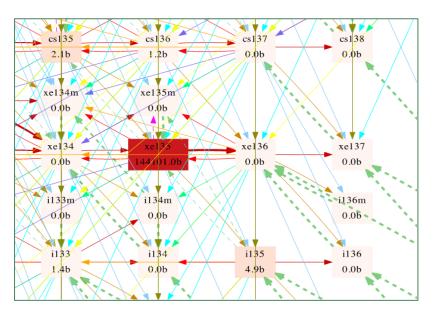
• Fission product yields (ENDF/B-VII.0)

- 30 actinides: ^{227,228,232}Th, ²³¹Pa, ²³²⁻²³⁸U, ²³⁸⁻²⁴²Pu, ^{241,242m,243}Am, ^{237,238}Np, ^{242-246,248}Cm, ^{249,252}Cf, and ²⁵⁴Es
- Data are from England and Rider compilations
- Energy-dependent yields tabulated at
 - Thermal fission: 0.0253 eV
 - Fast fission: 500 keV
 - High energy fission: 14 MeV
- Actual yields are interpolated using the mean energy of neutrons causing fission

SCALE/ORIGEN team evaluates new nuclear data and corrects/reports errors for downstream users **Example from ENDF/B-VII.0**

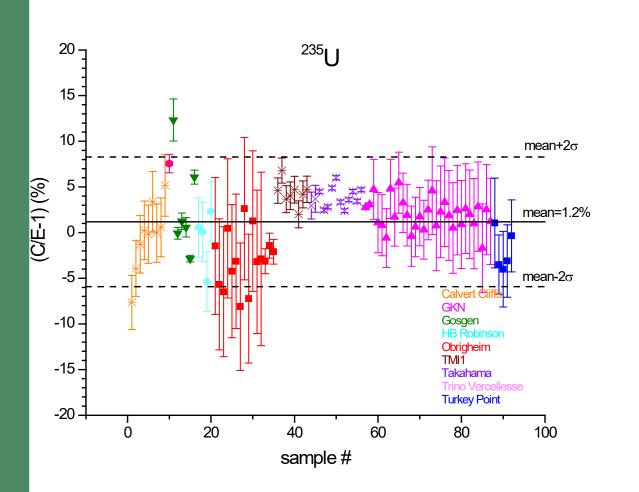
Issue: ²³⁴Th beta decay daughter incorrectly assigned as ²³⁴Pa instead of isomer ^{234m}Pa

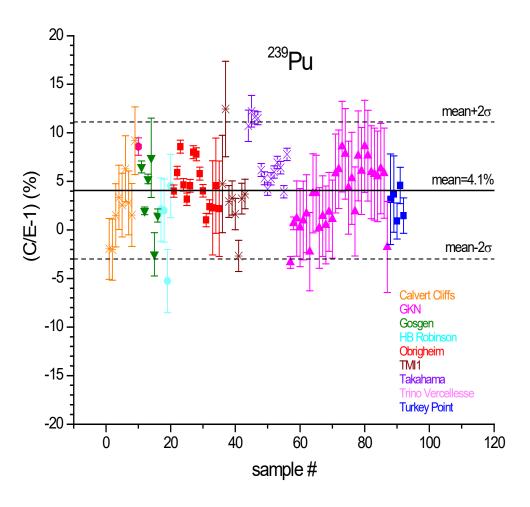

Impact: order of magnitude difference in gamma spectra for ²³⁸U decay



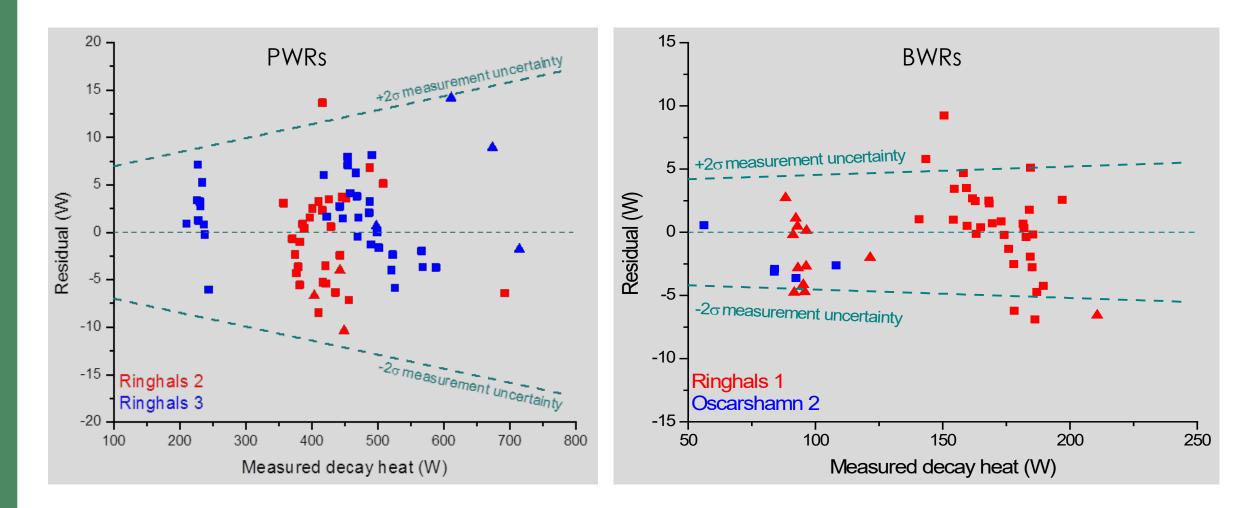
ORIGEN API (Fortran/C++)

- API for depletion/decay
 - load data resources (decay, yields, etc.)
 - update transition data A in each depletable zone
 - multigroup flux spectrum from MPACT updates
 - energy-dependent fission yields, e.g. U-235 -> (n,f) -> Xe-135
 - energy-dependent isomeric transitions, e.g. Am-241 -> (n,g) -> Am-242m
 - update any 1-group xs known in transport (e.g. total absorption)
 - solve for end-of-step number densities $\vec{N}(t) = \exp(At)\vec{N}(0)$


- (new) API for decay emissions
 - given isotopics: calculate decay heat, neutron and gamma emissions
 - can be used for secondary source modeling, shutdown doses/cooling



ORIGEN Validation Highlights (1/3)



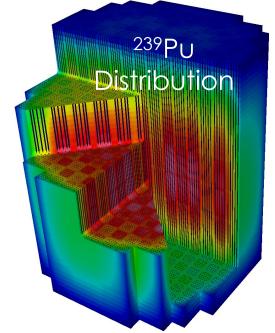
11

ORIGEN Validation Highlights (2/3)

ORIGEN Validation Highlights (3/3)

13

Summary


AK RIDGE

ational Laboratory

• ORIGEN within VERA

- Primary depletion/decay engine
- Reduced number of nuclides/transitions for million-zone problems
- Neutron emission capabilities (e.g. for secondary source modeling)
- Use of fundamental data has allowed "out of the box" modeling of
 - MOX fuel depletion
 - Tritium production
 - Antimony activation

- ORIGEN within SCALE
 - Method improvements (CRAM, sensitivity capability in progress)
 - Nuclear data testing/evaluation
 - Validation against experiment--CASL provides a whole new avenue for ORIGEN validation!

