MPACT Overview

February 11, 2019

VERA Workshop

Oak Ridge National Laboratory

Benjamin Collins Shane Henderson Cole Gentry Aaron Graham Shane Stimpson Frik Walker

University of Michigan

Thomas Downar Daniel Jabaay Brendan Kochunas Yuxuan Liu

Outline

- Background
- 2D/1D Method
 - Radial and Axial Equations
 - Coarse Mesh Finite Difference
- Parallel Decomposition Approach
- XS Library Background
- Depletion/Shuffling
- Reflector Fidelity
- Transient Capability

Background

- MPACT is a deterministic transport solver package that originally began development exclusively at the University of Michigan (~2011)
- Since 2014, development has been collaboratively driven by both ORNL and Michigan
- Goal to provide high-fidelity, pin-resolved flux and power distributions
- Several solvers are available, but the workhorse is the 2D/1D method
 - Decomposes 3D problems into an axial stack of radial planes
 - 2D-MOC used radially, and 1D-nodal methods used axially
 - Accelerated with 3D-coarse mesh finite difference (CMFD)

Comparison to Industry Neutronics Tools

Physics Model	Industry Practice	CASL (VERA-CS)
Neutron Transport	3-D diffusion (core) 2 energy groups (core) 2-D transport on single assy	3-D transport 51+ energy groups
Power Distribution	nodal average with pin-power reconstruction methods	explicit pin-by-pin
Xenon/Samarium	nodal average w/correction	pin-by-pin
Depletion	infinite-medium cross sections quadratic burnup correction history corrections spectral corrections reconstructed pin exposures	pin-by-pin with actual core conditions
Reflector Models	1-D cross section models	actual 3-D geometry
Target Platforms	workstation (single-core)	1,000 - 100,000 cores

2D/1D Illustration

Radial Equations

- Axially-Averaged Transport: $\varphi_{g,l}^Z(x,y) = \frac{1}{h_z} \int \varphi_{g,l}(x,y,z) dz$
 - μ_l denotes cosine of polar angle
 - α_l denotes azimuthal angle

$$\sqrt{1 - \mu_l^2} \left(\cos(\alpha_l) \frac{\partial}{\partial x} + \sin(\alpha_l) \frac{\partial}{\partial y} \right) \varphi_{g,l}^Z(x, y) + \Sigma_{t,g}^Z(x, y) \varphi_{g,l}^Z(x, y) = \tilde{q}_{g,l}^Z(x, y)$$

$$\swarrow \quad \text{Axial Transverse}$$

$$\tilde{q}_{g,l}^{Z}(x,y) = \bar{q}_{g,l}^{Z}(x,y) + TL_{g,l}^{Z}(x,y)$$
 Leakage

$$TL_{g,l}^{Z}(x,y) = \frac{\mu_l}{h_z} \Big(\varphi_{B,g,l}(x,y) - \varphi_{T,g,l}(x,y) \Big)$$

Axial TL - Approximations

• Isotropic Approximation:

$$TL_{g,l}^{Z}(x,y) = \frac{J_{B,g}(x,y) - J_{T,g}(x,y)}{4\pi h_{z}}$$

• Flat Approximation:

$$TL_{g,l}^{Z}(x,y) = \frac{J_{B,g}^{XY} - J_{T,g}^{XY}}{4\pi h_{z}}$$

Method of Characteristics

• MOC is used to discretize the 2D transport equation and determine subpin level angular and scalar fluxes:

 $\mathbf{\Omega} \cdot \nabla \varphi(x, y) + \Sigma_t(x, y) \varphi(x, y) = Q(x, y)$

- Casting this along a characteristic direction:
 - Can convert PDE into ODE
 - Assuming step characteristics: $\frac{d\varphi}{ds} + \Sigma_t \varphi(s) = Q$
- The angular flux at any point s along this direction can be found:

$$\varphi(s) = \varphi_{in} e^{-\Sigma_t s} + \frac{Q}{\Sigma_t} (1 - e^{-\Sigma_t s}), \quad \varphi(0) = \varphi_{in}$$

Method of Characteristics

• Outgoing Angular Flux:

$$\varphi_{out,m} = \varphi(s = l_m) = \varphi_{in,m} e^{\Sigma_t l_m} + \frac{Q}{\Sigma_t} \left(1 - e^{-\Sigma_t l_m}\right), \quad l_m = t / \sin(\theta_m)$$

- Average Angular Flux along a segment: $\tilde{\varphi}_m = \frac{1}{l_m} \int_{0}^{l_m} \varphi(s) ds = \frac{Q}{\Sigma_t} + \frac{\varphi_{in,m} - \varphi_{out,m}}{\Sigma_t l_m}$
- Scalar flux within a region:

$$\bar{\varphi}_{l} = \frac{\sum_{r=1}^{N_{ray,l}} \delta_{r} l_{r} \tilde{\varphi}_{l,r}}{\sum_{r=1}^{N_{ray,l}} \delta_{r} l_{m,r}}, \qquad \bar{\phi} = \sum_{i=1}^{N_{ang}} w_{i} \bar{\varphi}_{i}$$

Method of Characteristics

- 16 regions, 8 azimuthal angles,

Modular Ray Tracing

Axial Equations

• Radially-Averaged Transport:

$$\varphi_{g,l}^{XY}(z) = \frac{1}{A_{xy}} \int_{y_L}^{y_R} \int_{x_L}^{x_R} \varphi_{g,l}(x, y, z) dx dy$$

$$\mu_{l} \frac{\partial}{\partial z} \varphi_{g,l}^{XY}(z) + \Sigma_{t,g}^{XY}(z) \varphi_{g,l}^{XY}(z) = \tilde{q}_{g,l}^{XY}(z)$$

$$\tilde{q}_{g,l}^{XY}(z) = \bar{q}_{g,l}^{XY}(z) + TL_{g,l}^{XY}(z)$$

Leakage

- Total/transport cross section homogenized with scalar flux
- Diffusion approximation can be made for some solvers

Axial Equation

• In explicit form:

- μ_l denotes cosine of polar angle
- $-\alpha_1$ denotes azimuthal angle

$$TL_{g,l}^{XY}(z) = -\frac{\sqrt{1-\mu_l^2}}{A_{xy}} \left(\begin{array}{c} \cos(\alpha_l) \int\limits_{y_L}^{y_R} \left(\varphi_{g,l}(x_R, y, z) - \varphi_{g,l}(x_L, y, z)\right) dy \\ + \sin(\alpha_l) \int\limits_{x_L}^{x_R} \left(\varphi_{g,l}(x, y_R, z) - \varphi_{g,l}(x, y_L, z)\right) dx \end{array} \right)$$

• Isotropic:

$$TL_{g,l}^{XY}(z) = \frac{1}{4\pi h_x} \Big(J_{L,x,g}(z) - J_{R,x,g}(z) \Big) + \frac{1}{4\pi h_y} \Big(J_{L,y,g}(z) - J_{R,y,g}(z) \Big)$$

• And Flat:

$$TL_{g,l}^{XY}(z) = \frac{1}{4\pi h_x} \left(J_{L,x,g}^Z - J_{R,x,g}^Z \right) + \frac{1}{4\pi h_y} \left(J_{L,y,g}^Z - J_{R,y,g}^Z \right)$$

Axial Transport Solver

• 1D P_N

- Uses an Nth order polar expansion for the angular flux:

$$\varphi_g(z,\mu) = \sum_{m=0}^{N_{mom}} \frac{2m+1}{2} \varphi_{m,g}(z) P_m(\mu)$$

- Wraps one-node NEM (4th order Legendre expansion) kernel for spatial representation
- $NEM-P_3$:

$$-\frac{4D_{0,g}}{h^2}\frac{d^2}{d\xi}\Phi_{0,g}(\xi) + \Sigma_{r,g}\Phi_{0,g}(\xi) = Q_g(\xi) + 2\Sigma_{r,g}\Phi_{2,g}(\xi)$$
$$-\frac{4D_{2,g}}{h^2}\frac{d^2}{d\xi}\Phi_{2,g}(\xi) + \left(\Sigma_{t,g} + \frac{4}{5}\Sigma_{r,g}\right)\Phi_{2,g}(\xi) = -\frac{2}{5}\left(Q_g(\xi) - \Sigma_{r,g}\Phi_{0,g}(\xi)\right)$$
$$D_{0,g} = \frac{1}{3\Sigma_{tr,g}} \qquad D_{2,g} = \frac{9}{35\Sigma_{t,g}}$$

Radial TL Interpolation

- The currents used the generate the radial transverse leakages do not have axial dependence
- To compensate for this, a quadratic expansion for the leakage is formulated:

$$TL_{g,l}^{XY}(\xi) = \sum_{i=0}^{2} TL_{g,l,i}^{XY} P_{i}(\xi)$$

• Uses information from the upper and lower neighboring planes

Coarse Mesh Finite Difference

- CMFD is used as an accelerator to improve eigenvalue and scalar flux convergence in a wide range of transport solvers
- Pin-wise coarse cells
- Homogenization:

$$\bar{\Sigma}_{\mathbf{x},\mathbf{g},\mathbf{n}} = \frac{\sum_{i \in n} \Sigma_{x,g,i} V_i \phi_{g,i}}{\sum_{i \in n} V_i \phi_{g,i}}, \quad \bar{\phi}_{\mathbf{g},\mathbf{n}} = \frac{\sum_{i \in n} V_i \phi_{g,i}}{\sum_{i \in n} V_i}$$

• Projection: $\bar{\xi}_{g,i,n} = \frac{\phi_{g,i}}{\bar{\phi}_{g,n}}$

Coarse Mesh Finite Difference

- To perform a CMFD iteration, coupling coefficients are formulated:
 - Finite difference coupling coefficient:

$$\widetilde{D}_{g,n,i} = \frac{2D_{g,n}D_{g,n(i)}}{D_{g,n}h_{n(i),i} + D_{g,n(i)}h_{n,i}}$$

- Current correction coupling coefficient

$$J_{s,g,n,i}^{transport} = -\widetilde{D}_{g,n,i} (\phi_{g,n} - \phi_{g,n(i)}) + \widehat{D}_{g,n,i} (\phi_{g,n} + \phi_{g,n(i)})$$
$$\widehat{D}_{g,n,i} = \frac{J_{s,g,n,i}^{transport} + \widetilde{D}_{g,n,i} (\phi_{g,n} - \phi_{g,n(i)})}{\phi_{g,n} + \phi_{g,n(i)}}$$

• Constructs and solves an nCell × nCell × nGroup matrix

Parallel Decomposition

XS Libraries and Scattering

- ENDF-B/VII basic nuclear data library
 - Collapsed to a multi-group library (51/252 groups)
 - Library generated with SCALE codes _

- Subgroup Resonance Self Shielding
- Default TCP₀ scattering (P_N available)

Depletion Methodology through ORIGEN

- Over 40 years of applications and validation bases within SCALE ۲
- In-line depletion and decay of the fuel and burnable poisons •
- Includes capability for activity, decay heat, radiation emission rates, and activation of structural materials
- Reduced isotope chain developed to improve run time and memory footprint
 - \sim 2200 \rightarrow 263 isotopes

Fuel Shuffling Capability

- Depletion and fuel shuffle capability
 - Tracks isotopic transmutation in every region
 - Stores exact isotopics for entire core
 - Provides mechanism to shuffle full core correctly rotating isotopics
 - Decays all isotopes over outage
- Also manages shuffling and restart data for multiphysics calculations
 - CRUD restart information from MAMBA
 - Vessel fluence restart data from Shift
 - CTFFuel restart data

Reflector/Vessel Resolution

NuScale-like Slice

Watts Bar Unit 1 Slice

Transient Multi-level (TML) Method

- Pure transport transient calculation is computationally very expensive.
- Objective of the TML method is to use multi-level transient solvers to capture the physical phenomena in different time domains to maximize the numerical accuracy and computational efficiency.

Transient Application to Watts Bar

pin_powers: Axial 52.767, state 0

Time Step	TML Enabled	Runtime
1 ms	No	8.7 hours
5 ms	No	2.3 hours
5 ms	Yes	3.3 hours

Summary

- Reviewed the 2D/1D equations
 - Approximations to Transport Equation
 - MOC, P₃, CMFD
 - Leakage Approximations
- Other key components
 - Depletion, Shuffling, Parallelization, XS Library
- Demonstrated transient capabilities
- Other MPACT capabilities are covered in later talks

Questions?

