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Abstract

This manual presents the theory underlying the three-dimensional (3D) whole-core, pin-resolved neutron transport

calculation methodologies employed in the MPACT code. MPACT’s primary goal is to provide accurate sub-pin power

distributions in a computationally efficient manner. To accomplish this, MPACT offers several different transport

method options. The 2D/1D method, in which 3D problems are decomposed into an axial stack of radial “slices,” is

currently the most commonly used. In this option, two-dimensional (2D) planar solutions are provided by the method

of characteristics (MOC), and axial solutions are provided via one-dimensional (1D) approximate diffusion or P3

solutions. The radial and axial solutions are coupled by (i) axial and radial transverse leakages, and (ii) a global 3D

coarse mesh finite difference (CMFD) solve, which provides both acceleration and stability to the solution iteration

scheme.

The subsequent chapters of this manual present a range of topics, including MOC, CMFD, axial nodal transport

solvers, 2D/1D, self-shielding, depletion, thermal-hydraulics, and transient methods. The underlying theory of the

2D/1D method is developed, diagrams are included to highlight important algorithmic flow, and important concepts

are discussed as appropriate. This manual is intended to be self-sufficient, but references to published articles and

other materials are included for further reading.

MPACT is a relatively new code, with new capabilities and many computational methods that did not exist until

recently. This manual is an even newer document with chapters written by several different code contributors working

under time constraints. For these reasons, the manual is not yet be complete and finalized. Future versions of this

manual will address current deficiencies.

CASL-U-2019-1874-001 iii Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

Contents

1 Introduction 1

2 The Linear Boltzmann Transport Equation 4

2.1 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Multigroup Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Discrete Ordinates (SN) Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Summary of Algorithms 12

4 The 2D/1D Method 16

4.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 The Basic 2D/1D Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Iteration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Appendix A: Relaxation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 The Method of Characteristics Solution

Methodology 32

5.1 2D Radial Solution Methodology by the MOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Method of Characteristics Solution of the Boltzmann Transport Equation in 3D . . . . . . . . . . . . 34

CASL-U-2019-1874-001 iv Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

5.3 Approximations of the Characteristics Transport Equation . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Constant Material Properties in a Discrete Region . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2 Flat Source Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 Isotropic Scattering Source Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Discretization of the Characteristics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Iteration Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5.1 Source Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5.2 Convergence Criterion for Source Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.3 MOC Sweep Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5.4 Gauss-Seidel and Jacobi Inscatter Sweeping Algorithms . . . . . . . . . . . . . . . . . . . . 46

6 1D Axial Solution Methodology 51

6.1 One-Dimensional Axial Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Transport-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 Diffusion-Based Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 One-Node vs. Two-Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Nodal Expansion Method (NEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Source Expansion Nodal Method (SENM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Spherical Harmonics (PN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Discrete Ordinates (SN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6.1 Spatial Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6.2 Azimuthal Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.7 Transverse Leakage Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Coarse Mesh Finite Difference Acceleration 65

CASL-U-2019-1874-001 v Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

7.1 Conventional CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Spatial Domain Decomposed CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Artificially Diffusive CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Optimal CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 3D MOC CMFD Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 Subplane CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.6.1 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.6.2 Coupling Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.7 Solving the CMFD Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.7.1 Power Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.7.2 Wielandt Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.7.2.1 Traditional Wielandt Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.7.2.2 Space-Dependent Wielandt Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7.2.3 Impact on Linear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.7.3 Convergence Criterion for CMFD Power Iterations . . . . . . . . . . . . . . . . . . . . . . . 77

7.8 Red-Black Successive Over-Relaxation CMFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.8.1 Red-Black Gauss-Seidel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.8.2 Successive Over-Relaxation (SOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 General Cross Section Data Calculation 82

8.1 The Multigroup Cross Section Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Macroscopic Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

CASL-U-2019-1874-001 vi Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

8.3 Transient Data Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4 Data for Thermal Power Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 Cross Section Resonance Self-Shielding 88

9.1 The Resonance Self-Shielding Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.2 The Subgroup Method, ESSM, and ESSM-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3 Resonance Interference and Resonance Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4 Lumped Parameter MOC for Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.5 Multigroup and 1-Group Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10 Nuclide Depletion and Decay 101

10.1 Nuclide Transmutation Equation and its Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.1.1 Nuclide Transmutation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.1.2 Computing the Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.1.3 MPACT Point Depletion Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.2 Coupling of the Neutron Transport and Nuclide Transmutation Equations . . . . . . . . . . . . . . . 109

10.2.1 Predictor-Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.2.2 Substep Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10.2.3 Depletion Time-stepping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11 Transient Methods 113

11.1 Transient Methods within the 2D/1D Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.1.1 3D Time-dependent Neutron Transport Equations . . . . . . . . . . . . . . . . . . . . . . . . 113

11.1.2 Precursor Integration and Formulation of the Transient Fixed Source Problem . . . . . . . . . 114

11.1.3 2D MOC Solution of the Transient Fixed Source Problem . . . . . . . . . . . . . . . . . . . 116

CASL-U-2019-1874-001 vii Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

11.1.4 Transient 1D Nodal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1.5 CMFD Transient Fixed Source Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.1.5.1 MGS CMFD Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.1.5.2 MGM CMFD Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.1.6 Iteration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.2 Transient Multilevel (TML) Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.2.1 CMFD Adjoint Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.2.2 Point Kinetics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.2.3 Transient Multilevel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.2.3.1 3D Transport and CMFD Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.2.3.2 3D CMFD and EPKE Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.2.4 Iteration Scheme with TH Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.2.5 First Level TH Coupling for 3D Transport/3D CMFD . . . . . . . . . . . . . . . . . . . . . . 127

11.2.5.1 Second Level TH Coupling for 3D CMFD/EPKE . . . . . . . . . . . . . . . . . . 130

11.2.5.2 Overall Flow Chart for TML with TH Feedback . . . . . . . . . . . . . . . . . . . 130

12 Simplified Thermal Hydraulic Model 131

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.2 Fluid Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.3 Fuel Temperature Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.3.1 1D Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.3.1.1 Heat Transfer from Fluid to Clad . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.3.1.2 Gap Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.3.1.3 Radial Heat Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

CASL-U-2019-1874-001 viii Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

12.3.1.4 Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.3.2 Fuel Temperature Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

13 Miscellaneous Topics 137

13.1 Module-Based Decomposition Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13.2 Rotational Symmetry Boundary Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

CASL-U-2019-1874-001 ix Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

1. Introduction

MPACT is a three-dimensional (3D) full-core neutron transport code capable of calculating subpin power distributions.

Calculations are based on the Boltzmann transport equation for the neutron fluxes, for problems in which the detailed

geometrical configuration of fuel components such as the pellet and cladding are explicitly retained. The cross section

data needed for the neutron transport calculation are obtained directly from a multigroup cross section library, which

has traditionally been used by lattice physics codes to generate few-group homogenized cross sections for nodal core

simulators. Hence, MPACT assumes neither a priori homogenization nor group condensation for the full core spatial

solution.

The 3D MPACT transport solution can be obtained using the method of characteristics (MOC) [1], [43], which employs

discrete ray tracing within each fuel pin. However, for practical reactor applications, the direct application of MOC to

3D core configurations requires an excessive amount of memory and computing time, due to the very large number of

rays.

For practical 3D full-core calculations, MPACT commonly uses an approximate “2D/1D” method that treats the radial

(x and y) variables differently from the axial (z) variable. In particular, the radial dependence of the solution is

calculated using transport theory, and the axial dependence is calculated using diffusion or P3 theory. The 2D/1D

method requires the core to be divided into a vertical stack of axial slices with a thickness of ∆z ≈ 5–10 cm. Each

axial slice is divided radially into coarse spatial cells with boundaries that usually constitute the pin cell boundaries,

for which ∆x = ∆y ≈ 1.5 cm. Then, each coarse radial cell (pin cell) is divided into 50–100 fine radial cells, which

resolve the angular flux in the fuel, cladding, and moderator regions.

The 2D radial transport calculations are formulated using the 2D MOC method on the fine radial spatial cells within

each slice. The 1D axial diffusion or P3 calculations are formulated using the nodal expansion method (NEM) on

the coarse radial spatial cells and extend axially through every slice. The fine- and coarse-grid equations are coupled

through transverse leakages, and the equations are structured so that upon convergence, the fine-grid scalar fluxes –

integrated over a coarse spatial cell – exactly yield the coarse-grid scalar fluxes. The approximate 1D axial calcula-

tion is used because most spatial heterogeneity in the reactor core occurs in the radial direction instead of the axial

direction. Therefore, the neutron flux itself should have strong spatial variations in the radial direction, but only weak

spatial variations axially. Alternatively, a full 3D MOC solution can be performed, if the problem warrants it and the

computational resources are available.
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To accelerate the iterative convergence of the whole-core transport calculation, MPACT uses the coarse mesh finite

difference (CMFD) acceleration method. The basic spatial mesh in the CMFD formulation is the 3D coarse spatial

grid upon which the group constants are dynamically homogenized using the estimates of the fine-grid scalar fluxes.

The concept of dynamically homogenizing the group constants for each pin cell is the basis of the effectiveness of

the CMFD formulation. The intra-cell flux distribution determined from the MOC calculation is used to generate

the homogenized cell constants, while the MOC cell surface-averaged currents are used to determine the radial nodal

coupling coefficients. An equivalence formalism guarantees that, on convergence, the scalar flux obtained with CMFD

is identical to the scalar flux obtained by the MOC calculation, integrated over a coarse cell. In addition to the acceler-

ation aspect of the CMFD formulation, CMFD provides the framework for the 3D calculation in which the global 3D

neutron balance is maintained through the use of the MOC-generated cell constants, radial coupling coefficients, and

the NEM-generated axial coupling coefficients.

An outline of the remainder of this manual follows:

• In Chapter 2, the steady-state linear Boltzmann (neutron transport) equation is introduced, along with its stan-

dard multigroup approximation (in energy) and discrete ordinates approximation (in angle).

• Chapter 3 briefly outlines how MPACT uses the algorithms described in the subsequent chapters of the manual

to solve eigenvalue, depletion, and transient problems.

• Chapter 4 begins with the history of the 2D/1D method in MPACT. Then the 2D/1D method is described,

starting from the underlying Boltzmann transport equation. The unique feature of this method is that the 2D

transport equation describes neutron transport in the radial directions x and y, and the diffusion or P3 equations

approximately describe neutron transport in the axial direction z. The chapter concludes with an outline of the

basic iteration strategy used by MPACT to solve the 2D/1D equations.

• Chapter 5 presents the method of characteristics (MOC) methodology for discretizing and solving the 2D linear

Boltzmann (neutron transport) equation.

• Chapter 6 describes the methods used in MPACT to spatially discretize the 1D axial (typically diffusion or P3)

equations.

• Chapter 7 describes the 3D coarse mesh finite difference (CMFD) method used to accelerate the iterative con-

vergence of the 2D/1D solver.

• Chapter 8 presents the general multigroup cross section calculation in MPACT.

• Chapter 9 discusses MPACT’s treatment of energy resonance and self-shielding.

• Chapter 10 presents the MPACT methodology for solving depletion problems.

• Chapter 11 describes methods used in MPACT for solving transient problems.
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• Chapter 12 outlines MPACT’s simplified thermal hydraulics (TH) model.

• Chapter 13 concludes the manual with brief discussions of some miscellaneous topics.

CASL-U-2019-1874-001 3 Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

2. The Linear Boltzmann Transport Equa-

tion

2.1 The Boltzmann Equation

This chapter provides a brief introduction to the 3D steady-state Linear Boltzmann Transport Equation, the solution

of which determines the neutron (and photon) fluxes in nuclear reactor cores and shields. A detailed derivation of this

equation is beyond the scope of this manual; the equation is provided here, and some of its properties are described.

For a careful derivation, see Prinja and Larsen (2010) [73].

To characterize a general 3D steady-state neutron transport process, six independent variables are required: three

components of the 3D spatial position vector:

xxx = (x,y,z), (2.1a)

two angular variables (the polar cosine µ and the azimuthal angle ω) to specify the 3D unit vector ΩΩΩ denoting the

direction of flight:

ΩΩΩ = (Ωx,Ωy,Ωz) = (
√

1−µ2 cosω,
√

1−µ2 sinω,µ), (2.1b)

and the kinetic energy E. These variables ultimately make it possible to specify the population of neutrons (i) at an

arbitrary point xxx in the system, (ii) traveling in an arbitrary direction of flight ΩΩΩ, and (iii) with an arbitrary energy E.

If the spatial variables x, y, and z are displaced by incremental (very small) amounts dx, dy, and dz, the spatial vector

xxx will sweep out an incremental hexahedral volume dV = dxdydz. Similarly, if the angular variables µ and ω are

displaced by incremental amounts dµ and dω , then the unit vector ΩΩΩ will sweep out a dimensionless incremental

rectangular element of area or solid angle dΩ = dµdω on the unit sphere.
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The macroscopic cross sections are defined by the following:

Σt(xxx,E)ds = the incremental probability that a neutron at point xxx, with energy E,

traveling an incremental distance ds, will experience a collision with a nucleus, (2.2a)

Σs(xxx,E)ds = the incremental probability that a neutron at point xxx, with energy E,

traveling an incremental distance ds, will scatter off a nucleus, (2.2b)

Σγ(xxx,E)ds = the incremental probability that a neutron at point xxx, with energy E,

traveling an incremental distance ds, will be captured by a nucleus, (2.2c)

Σ f (xxx,E)ds = the incremental probability that a neutron at point xxx, with energy E,

traveling an incremental distance ds, will initiate a fission event with a nucleus. (2.2d)

These cross sections satisfy:

Σt(xxx,E) = Σs(xxx,E)+Σγ(xxx,E)+Σ f (xxx,E). (2.3)

The macroscopic differential scattering cross section is defined by:

Σs(xxx,ΩΩΩ′ ·ΩΩΩ,E ′→ E)dsdΩdE = the incremental probability that a neutron at (xxx,ΩΩΩ′,E ′),

traveling an incremental distance ds, will scatter into

dΩ about Ω and dE about E. (2.4)

This cross section satisfies: ∫
∞

0

∫
4π

Σs(xxx,ΩΩΩ′ ·ΩΩΩ,E ′→ E)dΩdE = Σs(xxx,E ′). (2.5)

Also, the fission spectrum is defined by

χ(xxx,E)dE = the incremental probability that a fission neutron, emitted

at xxx, will have energy between E and E +dE. (2.6)

The fission spectrum satisfies: ∫
∞

0
χ(xxx,E)dE = 1. (2.7)

It is assumed that in all problems, the material cross sections and fission spectrum are specified at each spatial point xxx

in the physical system of interest.

Next, we consider all neutrons that (i) are geometrically located in a volume increment dV about a point xxx, (ii) travel

within a solid angle dΩ about the direction ΩΩΩ, and (iii) have energies between E and E + dE. The angular neutron

density N(xxx,ΩΩΩ,E, t), a function of six independent variables, is defined by:

N(xxx,ΩΩΩ,E)dV dΩdE = the incremental number of neutrons in

dV dΩdE about the phase space point (xxx,ΩΩΩ,E). (2.8)
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The angular flux ψ(xxx,ΩΩΩ,E) is now defined by:

ψ(xxx,ΩΩΩ,E) = vN(xxx,ΩΩΩ,E), (2.9)

where v =
√

2E/m = neutron speed. ψ has the following physical interpretation:

ψ(xxx,ΩΩΩ,E)dV dΩdE = the incremental rate at which path length is

generated by neutrons in dV dΩdE about (xxx,ΩΩΩ,E) . (2.10)

(The rates at which neutrons interact with matter are directly proportional to ψ .)

In the following linear Boltzmann equation for ψ(xxx,ΩΩΩ,E), we assume that a convex spatial domain V is given, and

that all the material cross sections are known for all points xxx ∈V :

ΩΩΩ ·∇∇∇ψ(xxx,ΩΩΩ,E)+Σt(xxx,E)ψ(xxx,ΩΩΩ,E) =
∫

∞

0

∫
4π

Σs(xxx,ΩΩΩ′ ·ΩΩΩ,E ′→ E)ψ(xxx,ΩΩΩ′,E ′)dΩ
′dE ′

+
χ(xxx,E)
4πkeff

∫
∞

0

∫
4π

νΣ f (xxx,E ′)ψ(xxx,ΩΩΩ′,E ′)dΩ
′dE ′,

xxx ∈V,ΩΩΩ ∈ 4π,0 < E < ∞. (2.11a)

Eq. (2.11a) must be solved subject to the “vacuum” boundary condition:

ψ(xxx,ΩΩΩ,E) = 0, xxx ∈ ∂V,ΩΩΩ ·nnn < 0,0 < E < ∞. (2.11b)

Eqs. (2.11a and b) constitute an eigenvalue problem for the eigenfunction ψ(xxx,ΩΩΩ,E) and the criticality eigenvalue keff.

The smallest positive eigenvalue keff is sought so that Eqs. (2.11a and b) have a solution ψ(xxx,ΩΩΩ,E)≥ 0. (Problems of

this type are most commonly solved by MPACT.)

For 3D neutron transport equations to be computationally solved by a deterministic method, it is necessary to discretize

each of the six independent variables, thereby turning Eqs. (2.11a and b) into a (typically very large) algebraic system

of equations. Discretizing the energy, direction, and spatial variables presents different types of problems. The energy

variable is discussed first.

2.2 The Multigroup Approximation

The multigroup approximation to the neutron transport equation is almost universally used to discretize the continuous

energy variable E. The structure of the resulting multigroup transport equations is closely related to that of the original

transport equation, the difference being that the energy variable is discrete rather than continuous. (Integrals over E

are replaced by sums over energy groups.) Several important identities of the original continuous-energy scattering

operator are preserved in the multigroup approximation. Here the multigroup transport equations are derived and some

of their properties are discussed.
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The multigroup approximation requires that a finite number G of energy bins or groups be chosen:

Emin = EG < EG−1 < · · ·< Eg < Eg−1 < · · ·< E2 < E1 = Emax,

with Emin sufficiently small that neutrons with energies less than Emin are negligible, and with Emax sufficiently large

such that neutrons with energies greater than Emax are negligible. The energy range Eg ≤ E < Eg−1 is the gth energy

group. It is customary to order the energy groups with the group index g increasing as the energies decrease. Then the

slowing-down of fast fission neutrons occurs through energy groups with increasing indices.

For each 1≤ g≤ G, we define:

ψg(xxx,ΩΩΩ) =
∫ Eg−1

Eg

ψ(xxx,ΩΩΩ,E)dE

= angular flux for group g ,and (2.12a)

χg(xxx) =
∫ Eg−1

Eg

χ(xxx,E)dE

= multigroup fission spectrum for group g . (2.12b)

By the preceding definitions and Eq. (2.7), the multigroup fission spectrum automatically satisfies
G

∑
g=1

χg(xxx) =
G

∑
g=1

∫ Eg−1

Eg

χ(xxx,E)dE =
∫ Emax

Emin

χ(xxx,E)dE = 1. (2.13)

To proceed, we integrate Eq. (2.11a) over the gth energy group, obtaining:

ΩΩΩ ·∇∇∇ψg(xxx,ΩΩΩ)+
∫ Eg−1

Eg

Σt(xxx,E)ψ(xxx,ΩΩΩ,E)dE

=
G

∑
g′=1

∫ Eg−1

Eg

∫ Eg′−1

E ′g

∫
4π

Σs(xxx,E ′→ E,ΩΩΩ′ ·ΩΩΩ)ψ(xxx,ΩΩΩ′,E ′)dΩ
′dE ′dE

+
χg(xxx)
4πkeff

G

∑
g′=1

∫ Eg′−1

E ′g

∫
4π

νΣ f (xxx,E ′)ψ(xxx,ΩΩΩ′,E ′)dΩ
′dE ′,

or:

ΩΩΩ ·∇∇∇ψg(xxx,ΩΩΩ)+

∫ Eg−1
Eg

Σt(xxx,E)ψ(xxx,ΩΩΩ,E)dE∫ Eg−1
Eg

ψ(xxx,ΩΩΩ,E)dE

ψg(xxx,ΩΩΩ)

=
G

∑
g′=1

∫
4π


∫ Eg−1

Eg

∫ Eg′−1
Eg′

Σs(xxx,E ′→ E,ΩΩΩ′ ·ΩΩΩ)ψ(xxx,ΩΩΩ′,E ′)dE ′dE∫ Eg′−1
Eg′

ψ(xxx,ΩΩΩ′,E ′)dE ′

ψg′(xxx,ΩΩΩ
′)dΩ

′

+
χg(xxx)
4πkeff

G

∑
g′=1

∫
4π


∫ Eg′−1

Eg′
νΣ f (xxx,E ′)ψ(xxx,ΩΩΩ′,E ′)dE ′∫ Eg′−1
Eg′

ψ(xxx,ΩΩΩ′,E ′)dE ′

ψg′(xxx,ΩΩΩ
′)dΩ

′,

or:

ΩΩΩ ·∇∇∇ψg(xxx,ΩΩΩ)+ Σ̂t,g(xxx,ΩΩΩ)ψg(xxx,ΩΩΩ) =
G

∑
g′=1

∫
4π

Σ̂s,g′→g(xxx,ΩΩΩ
′,ΩΩΩ)ψg′(xxx,ΩΩΩ

′)dΩ
′

+
χg(xxx)
4πkeff

G

∑
g′=1

∫
4π

ν̂Σ̂ f ,g(xxx,ΩΩΩ′)ψg′(xxx,ΩΩΩ
′)dΩ

′, (2.14)
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where:

Σ̂t,g(xxx,ΩΩΩ) =

∫ Eg−1
Eg

Σt(xxx,E)ψ(xxx,ΩΩΩ,E)dE∫ Eg−1
Eg

ψ(xxx,ΩΩΩ,E)dE

 , (2.15a)

Σ̂s,g′→g(xxx,ΩΩΩ
′,ΩΩΩ) =


∫ Eg−1

Eg

∫ Eg′−1
Eg′

Σs(xxx,E ′→ E,ΩΩΩ′ ·ΩΩΩ)ψ(xxx,ΩΩΩ′,E ′)dE ′dE∫ Eg′−1
Eg′

ψ(xxx,ΩΩΩ′,E ′)dE ′

 , (2.15b)

ν̂Σ̂ f ,g(xxx,ΩΩΩ′) =


∫ Eg′−1

Eg′
νΣ f (xxx,E ′)ψ(xxx,ΩΩΩ′,E ′)dE ′∫ Eg′−1
Eg′

ψ(xxx,ΩΩΩ′,E ′)dE ′

 . (2.15c)

Exact boundary conditions can be obtained by integrating Eq. (2.11b) over the energy groups:

ψg(xxx,ΩΩΩ) = 0, xxx ∈ ∂V,ΩΩΩ ·nnn < 0. (2.16)

Eqs. (2.14) through (2.16) are an exact system of equations for the group fluxes. If the hatted coefficients in Eqs.

(2.15) were known, then Eqs. (2.14) and (2.16) would, in the absence of spatial and angular discretizations, yield the

exact group fluxes. However, by Eqs. (2.15), the hatted coefficients depend on the solution of the continuous-energy

problem and are not known.

In the multigroup approximation, an approximation for ψ is specified and introduced into the right sides of Eqs. (2.15).

The resulting approximate multigroup cross sections are then used in Eq. (2.14).

Specifically, in each of the bracketed terms in Eq. (2.15), we introduce the approximation:

ψ(xxx,ΩΩΩ,E)≈Ψ(xxx,E) f (xxx,ΩΩΩ), (2.17)

where Ψ(xxx,E) is a specified neutron spectrum. The function f (xxx,ΩΩΩ) cancels out of each numerator and denominator,

and Eqs. (2.15) yield the multigroup cross sections:

Σt,g(xxx) =

∫ Eg−1
Eg

Σt(xxx,E)Ψ(xxx,E)dE∫ Eg−1
Eg

Ψ(xxx,E)dE

 , (2.18a)

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ) =


∫ Eg−1

Eg

∫ Eg′−1
Eg′

Σs(xxx,E ′→ E,ΩΩΩ′ ·ΩΩΩ)Ψ(xxx,E ′)dE ′dE∫ Eg′−1
Eg′

Ψ(xxx,E ′)dE ′

 , (2.18b)

νΣ f ,g(xxx) =


∫ Eg′−1

Eg′
νΣ f (xxx,E ′)Ψ(xxx,E ′)dE ′∫ Eg′−1
Eg′

Ψ(xxx,E)dE ′

 . (2.18c)

Using these approximate multigroup cross sections in place of the hatted exact cross sections in Eq. (2.14), we obtain
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the multigroup transport equations:

ΩΩΩ ·∇∇∇ψg(xxx,ΩΩΩ)+Σt,g(xxx)ψg(xxx,ΩΩΩ) =
G

∑
g′=1

∫
4π

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ)ψg′(xxx,ΩΩΩ

′)dΩ
′

+
χg(xxx)
4πkeff

G

∑
g′=1

∫
4π

νΣ f ,g(xxx)ψg′(xxx,ΩΩΩ
′)dΩ

′,

xxx ∈V,ΩΩΩ ∈ 4π,1≤ g≤ G. (2.19)

The multigroup fluxes ψg(xxx,ΩΩΩ) are obtained by solving Eqs. (2.19) with the multigroup boundary conditions (2.16).

To complete the multigroup approximation, the multigroup capture and fission cross sections are defined analogous to

Eqs. (2.18):

Σγ,g(xxx) =

∫ Eg−1
Eg

Σγ(xxx,E)Ψ(xxx,E)dE∫ Eg−1
Eg

Ψ(xxx,E)dE

 , (2.20a)

Σ f ,g(xxx) =

∫ Eg−1
Eg

Σ f (xxx,E)Ψ(xxx,E)dE∫ Eg−1
Eg

Ψ(xxx,E)dE

 . (2.20b)

Then, by Eqs. (2.3), (2.18), and (2.20), the following identities hold for all g and g′:

Σt,g(xxx) =

∫ Eg−1
Eg

[
Σs(xxx,E)+Σγ(xxx,E)+Σ f (xxx,E)

]
Ψ(xxx,E)dE∫ Eg−1

Eg
Ψ(xxx,E)dE

= Σs,g(xxx)+Σγ,g(xxx)+Σ f ,g(xxx), (2.21a)

and:
G

∑
g′=1

∫
4π

Σs,g→g′(xxx,ΩΩΩ
′ ·ΩΩΩ)dΩ

′ = · · ·= Σs,g(xxx). (2.21b)

Eqs. (2.21) hold for any choice of Ψ(xxx,E); they are the multigroup analog of the continuous-energy identities of Eqs.

(2.3) and (2.5).

The key element in this derivation is the choice of the neutron spectrum Ψ(xxx,E) in Eqs. (2.17) and (2.18). The

determination of this spectrum requires experience and careful understanding of the problem to be solved. A detailed

description of this process cannot be given here.

The structure of the multigroup transport equations is similar to that of the continuous-energy transport equation, the

key difference being that in the multigroup equations, the energy variable is discrete rather than continuous.

2.3 The Discrete Ordinates (SN) Approximation

For general 2D and 3D problems, the angular variable ΩΩΩ is widely discretized using the discrete ordinates or SN

approximation. For Cartesian geometries, this approximation consists of a system of angularly discrete equations with
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a mathematical structure that is similar to the original transport equation. The principal difference is that neutrons

travel only in a specified finite number of directions on the unit sphere rather than in all directions.

If N denotes the order of an angular quadrature set, then we let MN denote the number of discrete angles ΩΩΩm in the

quadrature set, with 1 ≤ m ≤MN . Associated with each ΩΩΩm is an angular weight wm, which represents the area (on

the unit sphere) of the cone whose central axis is ΩΩΩm. A function ψ(ΩΩΩ) is now represented as a discrete quantity:

ψ(ΩΩΩm) = ψm,1≤ m≤MN ,

and angular integrals of ψ(ΩΩΩ) are represented as quadrature sums:∫
4π

ψ(ΩΩΩ)dΩ≈
MN

∑
m=1

ψ(ΩΩΩm)wm =
MN

∑
m=1

ψmwm.

Historically, the determination of quadrature sets of discrete angles and weights for neutron transport problems has

received considerable attention. The general idea has been to choose quadrature sets such that (i) the directions and

weights are distributed as symmetrically as possible on the unit sphere, (ii) the angular weights are positive, (iii) the

approximation of an integral by a sum is exact when ψ is a low-order spherical harmonic function, and (iv) the total

number MN of directions and weights is as small as possible.

The general details of the procedures by which angular quadrature sets are chosen in practice is beyond the scope of

this manual. However, some information about product quadrature sets is included because they play an important

role in the 2D/1D method.

In product quadrature sets, the angular variables µ and ω are individually discretized, as shown in Eq. (2.1b): µ on the

interval −1 ≤ µ ≤ 1 (typically using a Gauss-Legendre quadrature set), and ω on the interval 0 ≤ ω < 2π (typically

using a Chebychev quadrature set). Thus, there is a 1D quadrature set for µ of order Na (a∼ “axial”):

{(µn,un)|1≤ n≤ Na}, (2.22a)

where un are the angular weights and a 1D quadrature set for ω of order Nr (r ∼ “radial”):

{(ωm,vm)|1≤ m≤ Nr}, (2.22b)

where vm are the angular weights. Therefore, Eq. (2.1b) gives the following 3D product quadrature set:

{(ΩΩΩn,m,wn,m) |1≤ n≤ Na,1≤ m≤ Nr}, (2.22c)

where

ΩΩΩn,m =

(√
1−µ2

n cosωm,
√

1−µ2
n sinωm,µn

)
, (2.22d)

and

wn,m = unvm. (2.22e)
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Product quadrature sets treat the polar direction differently from the radial directions; this feature conforms well with

the underlying methodology of the 2D/1D method.

Now, applying an SN approximation to the multigroup transport equations (2.19) and (2.16), we obtain:

ΩΩΩm ·∇∇∇ψm,g(xxx)+Σt,g(xxx)ψm,g(xxx) =
G

∑
g′=1

MN

∑
m′=1

Σs,g′→g(xxx,ΩΩΩm′ ·ΩΩΩm)ψm′,g′(xxx)wm′

+
χg(xxx)
4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,g′(xxx)ψm′,g′(xxx)wm′ ,

xxx ∈V,1≤ m≤MN ,1≤ g≤ G, (2.23a)

ψm,g(xxx) = 0, xxx ∈ ∂V,ΩΩΩm ·nnn < 0. (2.23b)

Again, these multigroup discrete ordinates equations retain the basic structure of the original Boltzmann transport

equation. The main difference between Eqs. (2.23) and the original transport Eq. (2.11a) is that in Eqs. (2.23), the

energies at which neutrons can exist are discrete (not infinite), and the directions in which neutrons can travel are also

discrete (not infinite).

The 2D/1D method approximates the 3D multigroup transport Eq. (2.19) in a way that leads to (i) a 2D “radial” trans-

port equation, coupled to (ii) a 1D “axial” transport equation. The multigroup and discrete ordinates approximations

described above can be directly applied to both of these equations. (However, the 1D axial transport equation is typ-

ically approximated by a 1D low-order PN equation; this reduces the computational cost and has only a minor effect

on accuracy.) After a brief summary (in Chapter 3) of the algorithms used in MPACT, the 2D/1D method is discussed

(in Chapter 4).
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3. Summary of Algorithms

This chapter summarizes the algorithms used in MPACT for solving three different types of problems. These al-

gorithms employ different capabilities in MPACT that are described in the subsequent chapters of this manual. For

readers who are already knowledgeable about nuclear reactor physics, this chapter provides a brief introduction to the

subsequent chapters of the manual, along with a description of how the capabilities in these chapters work together in

MPACT. For readers who are not yet knowledgeable, this chapter can be skipped until a later time.

• Eigenvalue Problems: Algorithm 3.1 describes the process by which MPACT solves the steady-state eigenvalue

problem for keff and φ . In Algorithm 3.1, the user can choose between 2D/1D and 2D, whether or not to use

CMFD, Gauss-Siedel, or Jacobi iteration in energy, and whether or not to include thermal feedback. However,

it should be noted that the 2D/1D problem cannot be run without CMFD. The primary details for this algorithm

can be found in Chapters 4, 5, 7, and 12.

• Depletion Calculations: Algorithm 3.2 describes MPACT’s depletion calculation. A predictor-corrector algo-

rithm is used to produce improved estimates of the nuclide compositions at each time step. More details are

available in Chapter 10.

• Transient Calculations: Algorithm 3.3 describes the process by which MPACT performs a transient calcula-

tion. A multi-level solver (point kinetics, CMFD, MOC) efficiently solves the fixed-source transient problem

while minimizing the number of transport sweeps required. More details are available in Chapter 11, as well as

a graphical flow chart of the iteration (see Figure 11.7).
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Algorithm 3.1: Algorithm for solving an eigenvalue problem in MPACT.
1: Update macroscopic cross sections from resonance treatment (subgroup) calculations (Chapter 9).

2: Guess initial source (φ (0)) and eigenvalue (k(0)eff ).

3: while φ (n) and k(n)eff not converged do

4: if considering feedback, then

5: Using the current estimate of solution, evaluate feedback equations (Chapter 12).

6: if update resonance parameters, then

7: perform subgroup calculations (Chapter 9).

8: end if

9: Update the macroscopic cross sections.

10: end if

11: if using CMFD, then

12: Generate coarse-grid quantities from the fine-grid fluxes and leakages.

13: Solve the CMFD eigenvalue problem iteratively to obtain an updated eigenvalue (k(n+1)
eff ) and coarse-grid

scalar flux. (Chapter 7 for more information).

14: Update the fine-grid scalar flux/fission source (φ (n+1/2)).

15: end if

16: if 2D/1D, then

17: Obtain the radial leakages from the CMFD solution.

18: Solve the 1D axial diffusion equation, Eq. (4.11b), to update the scalar fluxes.

19: end if

20: Update the axial leakage from CMFD.

21: if Gauss-Siedel, then

22: Obtain φ (n+1) by performing transport sweep(s) on the 2D radial transport equations, Eq. (4.15), as described

in Algorithm 5.3.

23: else if Jacobi, then

24: Obtain φ (n+1) by performing transport sweep(s) on the 2D radial transport equations, Eq. (4.15), as described

in Algorithm 5.4.

25: end if

26: end while
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Algorithm 3.2: Depletion algorithm in MPACT, also depicted in Fig. 10.5 of Chapter 10.
1: Set core power and nuclide compositions for t0.

2: for ti in t0, . . . , t f inal do

3: for predictor substeps j = 1, . . . ,J do

4: Perform depletion calculation for all nuclides. (See Fig. 10.1 for details.)

5: end for

6: Use Algorithm 3.1 to solve steady-state transport problem with updated material compositions.

7: for corrector substeps k = 1, . . . ,K do

8: Perform depletion calculation for all nuclides. (See Fig. 10.1 for details.)

9: end for

10: Average compositions from predictor and corrector steps. These are the compositions for ti+1.

11: if updating resonance parameters, then

12: Perform subgroup calculation. (See Chapter 9.)

13: end if

14: Use Algorithm 3.1 to solve steady-state transport problems with updated material compositions.

15: Set core power and nuclide compositions for ti+1.

16: end for
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Algorithm 3.3: Algorithm for solving transient problems in MPACT. See Chapter 11 for more details.
1: Perform initial steady-state forward transport and thermal hydraulics (TH) calculation (obtain converged neutron-

ics/TH steady-state solution)

2: Perform adjoint CMFD calculation, Eq. (11.33).

3: Begin transient calculation:

4: for ti in t0,MOC, . . . , t f inal,MOC do

5: Perform predictor MOC transient fixed source problem (TFSP) solve (one coarse step of Alg. 5.1).

6: for ti, j in ti,1, . . . , ti,M do

7: Linearly interpolate CMFD coefficients to CMFD time step j (out of M intermediate steps per MOC step).

8: Perform predictor CMFD solve (forward and adjoint), Eqs. (11.32) and (11.33).

9: Calculate exact point kinetic equation (EPKE) parameters.

10: for ti, j,k in ti, j,1, . . . , ti, j,N do

11: Linearly interpolate EPKE parameters to EPKE time step k (out of N fine steps per CMFD step)

12: Perform EPKE solve, Eq. (11.36) and Eq. (11.37).

13: end for

14: Correct CMFD solution with updated information from finer EPKE solve, Eq. (11.55).

15: end for

16: Correct transport solution with updated information from finer CMFD solve, Eq. (11.50).

17: Update pin powers and pass to TH solver

18: Perform TH solve

19: Update cross sections based on updated densities and temperatures from TH

20: end for
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4. The 2D/1D Method

4.1 Historical Overview

In the reactor physics community, the term 2D/1D denotes computational methods for solving 3D neutron transport

problems in which the 2D radial (x and y) and 1D axial (z) derivative terms are discretized differently. The motivation

for this is that in light water reactors (LWRs), the geometry of the core is complicated in the radial (x and y) directions,

but relatively simple in the axial (z) direction. Thus, the spatial behavior of the neutron flux should be complicated in

the radial directions, but simpler in the axial direction. A 3D spatial discretization scheme that makes proper use of

the relatively simple axial behavior of the neutron flux could be advantageous.

For realistic 3D neutron transport problems, computational methods that treat the radial and axial variables differently

were first proposed and implemented by two groups in Korea during 2002–2007 [15], [11], [17], [16], [18], [48], [59],

[13], [63], [10], [12].

• One group (N. Z. Cho, G. S. Lee, C. J. Park, and colleagues) at the Korea Advanced Institute of Science and

Technology (KAIST) developed the 2D/1D Fusion method for the CRX code [15], [17], [16], [18], [13], [63].

In this method, the 3D Boltzmann transport equation is solved by discretizing the radial derivative term on a fine

2D radial spatial grid and the axial derivative terms on a coarse radial spatial grid. (Again, a coarse radial grid is

usually Cartesian, with one coarse cell consisting of a pin cell. The fine radial grid is not Cartesian; it consists of

about 50–100 fine cells per coarse (pin) cell, with boundaries of the fine cells conforming to the circular edges

of the fuel and cladding and the outer edges of the coarse cell.) In contrast to the fine and coarse radial spatial

grids, there is only one coarse axial grid. Typically, a single coarse 2D radial cell consists of a pin cell, which is

about 1.5 cm in diameter. The width of a single axial cell is typically much larger, on the order of 5–10 cm.

• The other group (J. Y. Cho, H. G. Joo, K. S. Kim, and S. Q. Zee and colleagues), at the Korea Atomic Energy

Research Institute (KAERI), developed a different “planar MOC solution-based 3D heterogeneous core method”

for the DeCART code [11], [48], [10], [12]. The KAERI method also discretized the radial derivative term on the

fine spatial grid and the axial derivative term on the coarse radial grid. However, the KAERI method simplified

the radial derivative term in a way that (i) is accurate for problems in which the axial leakage can be represented

by Fick’s Law, and (ii) offers significant computational advantages for parallel- architecture computers. The

KAERI 2D/1D method evolved into the 2D/1D method currently implemented in MPACT.
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The KAERI method can be motivated by the fact that for 3D problems in which the cross sections depend only on the

radial spatial variables (x and y), an exact solution of the transport equation exists in terms of an axial buckling:

ψ(x,y,z,ΩΩΩ) = Ψ(x,y,Ω)eiBz.

Since the buckling approximation occurs naturally in diffusion theory, this suggests that for problems in which the

transport solution varies weakly in the axial (z) variable (but strongly in the radial (x and y) variables), an approximate

3D transport solution with sufficient accuracy can be obtained from an approximate transport problem – in which

transport physics is used to treat the radial variables and diffusion physics is used to treat the axial variable. The

KAERI method, implemented in DeCART, accomplished that goal. In an early publication, the KAERI method

in DeCART was simply called 2D/1D [48]. The 2D/1D moniker is used for that method and for the other related

methods introduced below.

The Deterministic Core Analysis Based on Ray Tracing (DeCART) code was originally developed under an I-NERI

project between KAERI and Argonne National Laboratory (ANL). An early version of DeCART was acquired by the

University of Michigan (UM), where it was initially used for the US Department of Energy (DOE) Consortium for

Advanced Light Water Reactors (CASL) project, which started in 2010. This version had an important deficiency: it

failed to converge for small axial cell widths ∆z. Still, the use of (the UM version of) DeCART demonstrated that for

problems in which DeCART converged, it had major computational advantages over other 3D SN or MOC codes.

Nonetheless, the failure of DeCART to converge for small ∆z and the lack of a mathematical foundation for the 2D/1D

methodology in DeCART were major concerns. For these and other practical reasons, a decision was made in 2012

to develop a new 3D reactor physics code at UM that would employ a more robust 2D/1D methodology. To create

this new code, a consistent mathematical foundation for the 2D/1D methodology was developed. The new code was

named MPACT; in 2014 it became jointly managed and developed with ORNL.

The remainder of this chapter outlines this basic 2D/1D theory. To simplify the discussion, we consider monoener-

getic (G = 1) problems with isotropic scattering. However, the extension of the 2D/1D method discussed below to

multigroup (G > 1) problems with anisotropic scattering is straightforward.

4.2 Preliminaries

We shall now derive the 2D/1D method for the 3D one-group Boltzmann equation with isotropic scattering in a

homogeneous medium:

ΩΩΩ ·∇∇∇Ψ(xxx,ΩΩΩ)+ΣtΨ(xxx,ΩΩΩ) =
Σs

4π

∫
4π

Ψ(xxx,ΩΩΩ′)dΩ
′+

νΣ f

4πkeff

∫
4π

Ψ(xxx,ΩΩΩ′)dΩ
′,

xxx ∈V,ΩΩΩ ∈ 4π. (4.1)
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The extension of the 2D/1D method to general multigroup, anisotropic scattering problems in heterogeneous media

is straightforward. In the subsequent discussion, important steps that must be followed in heterogeneous media are

explicitly discussed.

The notation in Eq. (4.1) is the same as in the previous chapters:

xxx = spatial variable

= (x,y,z),

ΩΩΩ = direction-of-flight variable

= (Ωx,Ωy,Ωz)

= (
√

1−µ2 cosω,
√

1−µ2 sinω,µ),

where µ is the polar cosine (−1≤ µ ≤ 1) and ω is the azimuthal angle (0≤ ω < 2π).

The physical system V is required to be a cylinder, consisting of points

xxx = (x,y,z) such that:

(x,y) ∈ R,

0≤ z≤ Z,

where R is a 2D region in the (x,y)-plane:

Figure 4.1. The 3D System V .

In this discussion, the boundary conditions on Ψ are assumed to be vacuum:

Ψ(xxx,ΩΩΩ) = 0,xxx ∈ ∂V,ΩΩΩ ·nnn < 0, (4.2)
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where nnn is the unit outer normal vector on ∂V . However, other boundary conditions (e.g., reflecting) are permitted.

The x and y variables as radial, and the z variable as axial.

4.3 The Basic 2D/1D Equations

The 2D/1D method is based on a system of equations that approximate Eq. (4.1). In this approximate system, neutrons

experience the correct 2D transport physics in the radial directions of x and y, but they experience 1D P1 or P3 physics

in the axial direction z. The 2D/1D method in MPACT is not simple, but it attempts to be as simple as possible, to

achieve the necessary accuracy and efficiency.

To begin, a 2D radial transport equation is formulated from Eq. (4.1) with an “isotropized” axial leakage term:

Ωx
∂ψ

∂x
(xxx,ΩΩΩ)+Ωy

∂ψ

∂y
(xxx,ΩΩΩ)+Σtψ(xxx,ΩΩΩ) =

Σs

4π

∫
4π

ψ(xxx,ΩΩΩ′)dΩ
′

+
νΣ f

4πkeff

∫
4π

ψ(xxx,ΩΩΩ′)dΩ
′− 1

4π

[
∂Jz

∂ z
(xxx)
]
. (4.3)

Here the isotropic function Jz(xxx) is an approximation to the axial current:

Jz(xxx)≈
∫

4π

Ωzψ(xxx,ΩΩΩ)dΩ. (4.4)

The exact definition of Jz is given below in Eqs. (4.12) and (4.14). The boundary condition for Eq. (4.3) consists of a

vacuum boundary condition on the cylindrical portion of ∂V :

ψ(xxx,ΩΩΩ) = 0 for (x,y) ∈ ∂R,0≤ z≤ Z. (4.5)

Operating on the solution of Eq. (4.3) by
∫

4π
Ωx(·)dΩ and

∫
4π

Ωy(·)dΩ yields the following radial currents:

Jx(xxx) =
∫

4π

Ωxψ(xxx,ΩΩΩ)dΩ,

Jy(xxx) =
∫

4π

Ωyψ(xxx,ΩΩΩ)dΩ.

(4.6a)

(4.6b)

Also, a 1D axial transport equation is formulated from Eq. (4.1), with isotropized radial leakage terms described by Jx

and Jy:

µ
∂ψ̂

∂ z
(xxx,ΩΩΩ)+Σtψ̂(xxx,ΩΩΩ) =

Σs

4π

∫
4π

ψ̂(xxx,ΩΩΩ′)dΩ
′

+
νΣ f

4πkeff

∫
4π

ψ̂(xxx,ΩΩΩ′)dΩ
′− 1

4π

[
∂Jx

∂x
(xxx)+

∂Jy

∂y
(xxx)
]
. (4.7)

Integrating this equation over the azimuthal angle ω and defining the azimuthally integrated flux,

ψ̂(xxx,µ)≡
∫ 2π

0
ψ̂(xxx,ΩΩΩ)dω, (4.8)
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results in

µ
∂ψ̂

∂ z
(xxx,µ)+Σtψ̂(xxx,µ) =

Σs

2

∫ 1

−1
ψ̂(xxx,µ ′)dµ

′+
νΣ f

2keff

∫ 1

−1
ψ̂(xxx,µ ′)dµ

′− 1
2

[
∂Jx

∂x
(xxx)+

∂Jy

∂y
(xxx)
]
. (4.9)

The boundary conditions for this equation are vacuum, on the top and bottom of V :

ψ̂(xxx,µ) = 0 for

z = Z ,−1≤ µ < 0,

z = 0 ,0 < µ ≤ 1.
(4.10)

In MPACT, the axial transport Eqs. (4.9) and (4.10) are not directly solved. Instead, the simpler 1D P1 (or P3) approx-

imation to these equations is formulated and solved, and the radial current Jz is expressed in terms of the approximate

P1 (or P3) solution. These approximations are defined next.

If we define the axial scalar flux:

φ̂(xxx)≡
∫ 1

−1
ψ(xxx,µ)dµ, (4.11a)

then the standard P1 approximation to Eqs. (4.9) and (4.10) is given by the 1D axial diffusion equation:

− ∂

∂ z
1

3Σt

∂ φ̂

∂ z
(xxx)+Σaφ̂(xxx) =

νΣ f

keff
φ̂(xxx)−

[
∂Jx

∂x
(xxx)+

∂Jy

∂y
(xxx)
]
, (4.11b)

with the boundary conditions:

φ̂(x,y,Z)+
2

3Σt

∂ φ̂

∂x
(x,y,Z) = 0,(x,y) ∈ R,

φ̂(x,y,0)− 2
3Σt

∂ φ̂

∂x
(x,y,0) = 0,(x,y) ∈ R.

(4.11c)

After Eqs. (4.11) are solved, the axial current Jz is defined by:

Jz(xxx) =−
1

3Σt

∂ φ̂

∂ z
(xxx). (4.12)

If, in addition to Eq. (4.11a) we also define

φ̂2(xxx)≡
∫ 1

−1
µ

2
ψ(xxx,µ)dµ, (4.13a)

then the standard P3 approximation to Eqs. (4.9) and (4.10) is given by the coupled 1D axial diffusion equations:

− ∂

∂ z
1

3Σt

∂

∂ z

[
φ̂(xxx)+2φ̂2(xxx)

]
+Σaφ̂(xxx) =

νΣ f

keff
φ̂(xxx)−

[
∂Jx

∂x
(xxx)+

∂Jy

∂y
(xxx)
]
,

− ∂

∂ z
9

35Σt

∂ φ̂2

∂ z
(xxx)+Σt φ̂2(xxx) =

2
5

[
Σaφ̂(xxx)−

νΣ f

keff
φ̂(xxx)

]
,

(4.13b)

with boundary conditions at z = Z:

φ̂(x,y,Z)+
5
4

φ̂2(x,y,Z)+
2

3Σt

∂

∂ z

[
φ̂(x,y,Z)+2φ̂2(x,y,Z)

]
= 0,

−1
5

φ̂(x,y,Z)+ φ̂2(x,y,Z)+
24

35Σt

∂ φ̂2

∂ z
(x,y,Z) = 0,

(4.13c)
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and at z = 0:

φ̂(x,y,0)+
5
4

φ̂2(x,y,0)−
2

3Σt

∂

∂ z

[
φ̂(x,y,0)+2φ̂2(x,y,0)

]
= 0,

−1
5

φ̂(x,y,0)+ φ̂2(x,y,0)−
24

35Σt

∂ φ̂2

∂ z
(x,y,0) = 0.

(4.13d)

After Eqs. (4.13) are solved, the axial current Jz is defined by

Jz(xxx) =−
1

3Σt

∂

∂ z

[
φ̂(xxx)+2φ̂2(xxx)

]
. (4.14)

The equations underlying the two 2D/1D methods currently used in MPACT can now be stated.

• The 2D/1D method with the P1 axial leakage solver is defined by Eqs. (4.3), (4.6), (4.11b), and (4.12). These

constitute a total of five equations for the five functions ψ(xxx,ΩΩΩ), Jx(xxx), Jy(xxx), φ̂(xxx), and Jz(xxx). The boundary

conditions for the 2D radial transport equation and the 1D axial diffusion equation are Eqs. (4.5) and (4.11c).

• The 2D/1D method with the P3 axial leakage solver is defined by Eqs. (4.3), (4.6), (4.13a), and (4.14). These

constitute a total of six equations for the six functions ψ(xxx,ΩΩΩ), Jx(xxx), Jy(xxx), φ̂(xxx), φ̂2(xxx), and Jz(xxx). The

boundary conditions for the 2D radial transport equation and the two 1D axial diffusion equations are Eqs. (4.5),

(4.13b), and (4.13c).

The 2D/1D equations constitute a 2D radial transport equation, coupled to one or two 1D axial diffusion equations. The

2D radial transport and 1D axial diffusion equations are coupled through the isotropized axial and radial current terms.

If the underlying problem is 2D with no axial variation, then the axial currents are zero, and the 2D/1D equations

reduce to the physically correct 2D radial transport equation. If the underlying problem is 1D with no radial variation,

then the radial currents are zero, and the 2D/1D equations reduce to the 1D axial P1 or P3 equations. Thus, the 2D/1D

equations describe a process in which transport physics governs the radial variables x and y, and P1 or P3 physics

governs the axial variable z.

4.4 Discretizations

In the 2D/1D equations, the energy variable is discretized using the conventional multigroup approximation. Details

of this discretization are independent of the 2D/1D methodology and were discussed in Chapter 2. The key point is

that in the derivation of the underlying multigroup 2D/1D equations from the multigroup transport equation, 2D/1D

equations for each energy group are obtained that closely resemble the one-group 2D/1D equations described above.

The only extra feature is that additional source terms appear due to the neutrons that scatter into a given group g from

other groups g′.

The direction-of-flight variable ΩΩΩ is discretized using modular discrete ordinates quadrature sets that optimize the

efficiency of the 2D/1D method for the types of pin cell geometries that MPACT is designed to simulate. The details
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of how the modular quadrature sets are designed are discussed in Chapter 5. In this report, the order of a quadrature

set is denoted by N, and the number of direction vectors in the quadrature set is denoted by Nq. Thus, a quadrature set

of order N consists of a set of Nq discrete 2D vectors ΩΩΩn = (Ωx,n,Ωy,n) and weights wn, with 1≤ n≤ Nq. The modular

quadrature sets are used to angularly discretize the 2D radial transport Eq. (4.3) and to construct the radial currents in

Eqs. (4.6).

The following is a discussion of the discretization of the spatial variables in the 2D/1D equations. Only the 2D/1D

equations with the P1 axial leakage solver are considered. (The P3 axial leakage solver is similar; it involves two 1D

axial diffusion equations rather than one.)

To begin, the system V is discretized in the axial variable z into K slices:

0 = z1/2 < z3/2 < · · ·< zk−1/2 < zk+1/2 < · · ·< zK+1/2 = Z.

The 2D radial transport Eq. (4.3) and the 1D axial diffusion Eq. (4.11b) are now integrated axially over the kth slice

zk−1/2 < z < zk+1/2. The integration of Eq. (4.3) produces a 2D radial transport equation for the axially integrated ψ:

Ωx
∂ψn,k

∂x
(x,y)+Ωy

∂ψn,k

∂y
(x,y)+Σtψn,k(x,y) =

Σs

4π

Nq

∑
m=1

ψm,k(x,y)wm

+
νΣ f

4πkeff

Nq

∑
m=1

ψm,k(x,y)wm−
1

4π∆zk

[
Jz,k+1/2(x,y)− Jz,k−1/2(x,y)

]
, (4.15)

where

ψn,k(x,y) =
1

∆zk

∫ zk+1/2

zk−1/2

ψ(x,y,z,ΩΩΩn)dz, (4.16)

is the axially integrated ψ , and

Jz,k±1/2(x,y) = Jz(x,y,zk±1/2), (4.17)

are the net axial currents on the top and bottom of slice k.

The axial integration of the diffusion Eq. (4.11b) produces a 1D balance equation:

1
∆zk

[
Jz,k+1/2(x,y)−Jz,k−1/2(x,y)

]
+Σaφ̂k(x,y)

=
νΣ f

keff
φ̂k(x,y)−

[
∂Jx,k

∂x
(x,y)+

∂Jy,k

∂y
(x,y)

]
, (4.18)

where

φ̂k(x,y) =
1

∆zk

∫ zk+1/2

zk−1/2

φ̂(x,y,z)dz, (4.19)

is the axially-integrated φ̂ , and

Jx,k(x,y) =
1

∆zk

∫ zk+1/2

zk−1/2

Jx(x,y,z)dz, (4.20a)

Jy,k(x,y) =
1

∆zk

∫ zk+1/2

zk−1/2

Jy(x,y,z)dz, (4.20b)
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are the axially-integrated radial currents.

Operating on Eq. (4.15) by:
Nq

∑
n=1

(·)wn,

we obtain:

∂Jx,k

∂x
(x,y)+

∂Jy,k

∂y
(x,y)+Σaφk(x,y) =

νΣ f

keff
φk(x,y)−

1
∆zk

[
Jz,k+1/2(x,y)− Jz,k−1/2(x,y)

]
, (4.21)

where

φk(x,y) =
Nq

∑
m=1

ψm,k(x,y)wm. (4.22)

Since the leakage terms in Eqs. (4.18) and (4.21) are identical, it follows that

φk(x,y) = φ̂k(x,y). (4.23)

Thus, the scalar fluxes from the 2D radial transport equation and the 1D axial diffusion equation are identical. Subse-

quent discretizations in x and y (discussed below) are constrained to preserve this important feature.

Equation (4.15) is the 2D radial transport equation for ψn,k(x,y). When the axial current terms Jz,k±1/2(x,y) are

known, Eq. (4.15) completely determines ψn,k(x,y). However, Eq. (4.18) alone cannot determine both φ̂k(x,y) and

Jz,k±1/2(x,y); at least one extra equation is needed. In the 2D/1D method described here, this extra equation comes

from a standard nodal diffusion expansion of Eq. (4.11b). This method, which has been employed in neutron diffusion

codes for many years, requires no modification for use in the 2D/1D method. In fact, any axial discretization method

for Eq. (4.11b) that employs the balance Eq. (4.18) could be implemented in MPACT without changing the overall

structure of the code.

The discretizations of Eqs. (4.15) and (4.18) are described next in the radial spatial variables x and y. First, the 2D

region R is divided into a Cartesian coarse grid (typically, one coarse cell = one pin cell) and an unstructured fine grid

is used to discretize a pin cell; typically, about 50 fine cells per coarse cell are used).

Second, the axial diffusion Eq. (4.18) is integrated radially over each coarse cell. Using radially coarse-cell flux-

weighted cross sections (the origin of these cross sections is described in the next paragraph), the equation becomes

one in which the unknowns are averaged radially (i.e., are constant) over each coarse cell. More precisely, the solution

of the fully discrete axial diffusion equation depends on k (the slice index) and j (the coarse cell index), but not on i

(the fine cell index). The radial current terms in this equation are obtained from the 2D radial transport calculation,

and the axial current terms calculated in this equation are used in the 2D radial transport calculation.

Third, the 2D radial transport Eq. (4.15) is discretized on the fine radial grid for each coarse cell Vj,k using the MOC.

However, the axial current terms in this equation are obtained from the axial diffusion calculation, and these are

constant over the coarse cell. Thus, in coarse cell Vj,k, the axial current terms depend on j and k, but not on i. The

MOC method for Eq. (4.15) utilizes balance equations obtained by integrating Eq. (4.15) over each fine cell vi, j,k.
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Figure 4.2. Fine and coarse spatial cells.

Summing these balance equations over all i which is over all fine cells in a single coarse cell, the balance equation for

the coarse cell is obtained. Operating on this coarse cell balance equation by

Nq

∑
n=1

(·)wn,

the angularly integrated balance equation is obtained for coarse cell Vj,k. Upon convergence, this balance equation for

Vj,k becomes identical to the balance equation for the same cell, which is obtained by integrating the axial diffusion Eq.

(4.18) over the cell. The flux-weighted coarse-cell homogenized cross sections used in the axial diffusion calculation

are obtained from the 2D radial transport calculations.

This completes the discussion of the discretization of the 2D/1D equations. The important features of the spatial

discretizations are (i) the use of coarse and fine radial grids, (ii) the discretization of the 2D radial transport equation

on the fine grid, (iii) the discretization of the 1D axial diffusion equation on the coarse grid, and (iv) the use of balance

equations with common leakage terms to ensure that the coarse mesh scalar fluxes from the 2D radial transport and

the 1D axial diffusion equations are identical.

4.5 Iteration Strategy

The iterative 2D/1D process used in MPACT is described in this section. The iteration strategy used to solve the

discretized 2D/1D equations involves (i) radial sweeps of the 2D radial transport equation, (ii) axial sweeps of the 1D

axial diffusion equation, and (iii) solving a low-order coarse-mesh 3D CMFD diffusion equation described in Chapter

4.

Figure 4.3 outlines an iteration, providing detailed explanations of each step in the subsequent text. (The equation

numbers in the figure and the discussion do not refer to the fully discretized equations solved in MPACT. Instead, they

refer to the closest version of the fully discrete equations that are printed in this document.)
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Figure 4.3. MPACT 2D/1D iteration strategy.

(i) First, the D̂ terms are calculated from Eq. (7.7) using coarse grid scalar flux and current estimates obtained from

the previous 1D axial diffusion and 2D radial transport calculations. (At the beginning of the first iteration,

the D̂ terms are estimated to be zero.) Then, using a global 3D low-order CMFD diffusion calculation, the

solution of Eq. (7.2) is obtained. In this calculation, the homogenized flux-weighted cross sections are obtained

from the previous 2D radial transport calculation, or they are volume-averaged for the first iteration. The 3D

CMFD calculation results in: new coarse grid cell-averaged scalar flux estimates, new coarse-grid edge current

estimates, and a new eigenvalue estimate.

(ii) Next, a solve of the 1D axial diffusion equations is performed, using the coarse-grid edge current estimates from

step (i). This solve can consist of local calculations that involve no axial sweeping; in this case, relaxation is

needed to stabilize the iterations for small ∆z. Alternatively, the solve can consist of several axial sweeps to

partly converge the discrete 1D equations. (If this sweeping is performed, relaxation is not likely needed.) The

end result consists of new coarse-cell scalar fluxes, and new estimates of the axial currents.

(iii) Next, the most recent available coarse-grid scalar flux estimates are used to update (renormalize) the estimates

of the fine-grid scalar fluxes. Then, using the latest axial current information, a specified number (typically,

three) of 2D transport sweeps on each axial slice is performed to improve the estimates of the fine grid scalar

fluxes. At the end of these sweeps, new coarse grid radial current and scalar flux estimates are available. Also,

new estimates of the coarse-grid flux-weighted cross sections are available; these homogenized cross sections

are used in subsequent coarse-grid calculations.

(iv) If the fine-grid scalar fluxes and eigenvalue are sufficiently converged, the iteration process is terminated. Oth-

erwise, the computer returns to step (i), and another iteration is initiated.
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4.6 Appendix A: Relaxation Strategy

The early 2D/1D method (in the DeCART code) was simpler and less stable than the 2D/1D method in MPACT

described previously in this chapter. The old 2D/1D method was based on Eq. (4.15):

Ωx
∂ψn,k

∂x
(x,y)+Ωy

∂ψn,k

∂y
(x,y)+Σtψn,k(x,y) =

Σs

4π

Nq

∑
m=1

ψm,k(x,y)wm

+
νΣ f

4πkeff

Nq

∑
m=1

ψm,k(x,y)wm−
1

4π∆k

[
Jz,k+1/2(x,y)− Jz,k−1/2(x,y)

]
, (4.24)

but not on the axial diffusion Eq. (4.11b). In its place, the simpler Fick’s Law approximation was used:

Jz,k+1/2(x,y) =−Dk+1/2(x,y)
φk+1(x,y)−φk(x,y)

∆k+1/2
, (4.25a)

where

Dk+1/2(x,y) =
∆k+1 +∆k

3Σt,k+1(x,y)∆k+1 +3Σt,k(x,y)∆k
, (4.25b)

∆k+1/2 =
1
2
(∆k+1 +∆k) . (4.25c)

An obvious iteration method for solving these equations consists of the following steps: (i) for estimated axial leakages,

perform independent sweeps on each axial slice, (ii) use the results of these sweeps to update the axial leakages, and

(iii) return to step (i) or stop if the solution is converged.

A deficiency of this method was its instability for problems with thin axial slices. To understand and prevent this

instability, a Fourier analysis of the iteration method was performed [51], [50]. It was found that by properly under-

relaxing the iterations, unconditional stability can be guaranteed. These Fourier analysis results were confirmed in

numerical simulations. Later, it was demonstrated (again, with Fourier analysis and numerical testing) that the CMFD-

accelerated iterations could also be stabilized using under-relaxation [52].

The following section provides some details and results of these Fourier analyses. This discussion is included because

the 2D/1D method described earlier – which is commonly used in MPACT – has been implemented in ways that can, in

certain circumstances, require under-relaxations. The 2D/1D method based on Eqs. (4.24) and (4.25) is not commonly

used in MPACT.

The Fourier analysis is based on the following fixed-source version of Eqs. (4.24) and (4.25):(
Ωx

∂

∂x
+Ωy

∂

∂y
+Σt,k

)
ψk(x,y,ΩΩΩ) =

1
4π

{
Σs,kφk(x,y)+Qk(x,y)

+
1

∆k

[
Dk+1/2

∆k+1/2

(
φk+1(x,y)−φk(x,y)

)
−

Dk−1/2

∆k−1/2

(
φk(x,y)−φk−1(x,y)

)]}
,

(4.26a)

φk(x,y) =
∫

ψk(x,y,ΩΩΩ′)dΩ
′. (4.26b)
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To solve this equation, a simple source iteration scheme that can be made stable for all ∆z > 0 is considered. While

the right side of the above equation depends only on the scalar fluxes φ in adjacent axial slices, a simple 2D sweep is

considered on each slice to update the scalar flux:(
Ωx

∂

∂x
+Ωy

∂

∂y
+Σt,k

)
ψ

(`+1/2)
k (x,y,ΩΩΩ) =

1
4π

{
Σs,kφ

(`)
k (x,y)+Qk(x,y)

+
1

∆k

[
Dk+1/2

∆k+1/2

(
φ
(`)
k+1(x,y)−φ

(`)
k (x,y)

)
−

Dk−1/2

∆k−1/2

(
φ
(`)
k (x,y)−φ

(`)
k−1(x,y)

)]}
, (4.27a)

φ
(`+1/2)
k (x,y) =

∫
ψ

(`+1/2)
k (x,y,ΩΩΩ′)dΩ

′, (4.27b)

followed by a (nonstandard) relaxation step to define the end-of-iteration scalar flux:

φ
(`+1)
k (x,y) = θφ

(`+1/2)
k (x,y)+(1−θ)φ

(`)
k (x,y). (4.27c)

In the Fourier analysis of this method, Eqs. (4.27) are not treated with any angular or radial spatial discretizations.

While these choices affect the accuracy of the discrete solution, they do not affect the iterative performance in con-

verging to this solution. The relaxation parameter θ in Eq. (4.27c) is to be determined; if θ = 1, the method defined

by Eqs. (4.27) is basically source iteration. In each iteration, the numerical solutions in slice k are directly coupled

only to the numerical solutions in the neighboring slices k+1 and k−1. Therefore, many iterations may be required

for the numerical fluxes in all the axial slices 1 ≤ k ≤ K to sufficiently communicate. For an infinite, homogeneous

medium with uniform ∆k = ∆z, the iterative performance of the method shown above can be assessed by a Fourier

analysis. Referring to Kelley and Larsen’s work [51, 52] for details, for θ = 1 (the standard source iteration method),

the growth factor ω is bounded from above and below by

ωmin ≤ ω ≤ ωmax, (4.28)

where

ωmax = c =
Σs

Σt
= scattering ratio, (4.29a)

which is attained for “flat” radial and axial modes. Also,

ωmin =

 0 , Σt∆z ≥ 2√
3c
,( “large” ∆z),

c− 4
3(Σt ∆z)2 , Σt∆z <

2√
3c
,( “small” ∆z),

(4.29b)

which is attained (i) for large ∆z by radially oscillatory modes, and (ii) for small ∆z by radially flat modes and axially

oscillatory modes. The error of iterate n satisfies

Error of Iterate n≈ (constant) ρ
n,

where

ρ = max(|ωmin|, |ωmax|) = spectral radius.

Therefore, the method is unstable when ρ ≥ 1, is stable but slowly converging when ρ < 1 but ρ ≈ 1, and is stable

and rapidly converging when ρ � 1.
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Using Eq. (4.27c), the Fourier analysis for 0≤ θ ≤ 1 yields

θωmin +1−θ ≤ ω ≤ θωmax +1−θ . (4.30)

For θ = 1 (the source iteration method originally in DeCART), Eqs. (4.29) and (4.30) give

ρ = |ω|max =

 c ,
√

2
3c < Σt∆z,

4
3(Σt ∆z)2 − c , Σt∆z ≤

√
2
3c .

(4.31)

This method is stable for
Σt∆z >

2√
3(1+ c)

,

but for small ∆z it becomes unstable, similar to the original method in DeCART.

The optimum value of θ in Eq. (4.30) is the value for which the left and right sides are equal in magnitude but opposite

in sign:

θoptωmin +1−θopt =−
[
θoptωmax +1−θopt

]
. (4.32a)

Thus,
θopt =

2
2− (ωmax +ωmin)

, (4.32b)

and then

ρ = |ω|max = θoptωmax +1−θopt

=
ωmax−ωmin

2− (ωmax +ωmin)
. (4.32c)

Combining Eqs. (4.29) and (4.32) results in:

θopt =


2

2−c , 2√
3c

< Σt∆z,

3(Σt ∆z)
2

2+3(1−c)(Σt ∆z)2 , Σt∆z ≤ 2√
3c
,

(4.33a)

ρ =


c

2−c , 2√
3c

< Σt∆z,

2
2+3(1−c)(Σt ∆z)2 , Σt∆z ≤ 2√

3c
.

(4.33b)

Equation (4.33b) shows that the iterative method defined by Eqs. (4.27) with θ defined by Eq. (4.33a) is stable for all

scattering ratios 0 ≤ c ≤ 1 and all axial grids ∆z > 0. Like standard source iteration applied to the SN equations, this

method becomes slowly converging as c→ 1. It also becomes slowly converging as ∆z → 0. However, like source

iteration, it does not become unstable. The DeCART-like method with θ = 1 is stable only for sufficiently large axial

grids.

CMFD acceleration can be applied to the source iteration method presented above to effectively couple the axial planes

to more than their nearest neighbor by solving an axial diffusion equation (embedded within the CMFD method) and

thereby more rapidly converging the transport solution. However, before applying a Fourier analysis, it is necessary

to linearize this method. Previous work shows that the linearized form of CMFD is equivalent to diffusion synthetic

acceleration (DSA) [61]. The DSA equivalent of this CMFD system yields an update term δφ
(`+1/2)
k for the scalar

flux. (Kelley and Larsen [52] provide an explicit definition of this correction term.) A CMFD iteration then consists

of
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(i) an axial sweep, as shown in Eq. (4.27a),

(ii) calculation of φ
`+1/2
k , Eq. (4.27b),

(iii) the CMFD calculation of δφ
(`+1/2)
k [52], and

(iv) the relaxed update equation

φ
(`+1)
k (x,y) = θ

(
φ
(`+1/2)
k (x,y)+δφ

(`+1/2)
k

)
+(1−θ)φ

(`)
k (x,y). (4.34)

These equations consitute a complete linearized CMFD iteration scheme. Because steps (i) and (ii) are unchanged,

so are their corresponding equations in the Fourier analysis. The growth factor for the CMFD-accelerated planar

syntehsis scheme with θ = 1 (no relaxation) may be written in the following form:

ω1(λr,ζ ) = 1− 1−ζ I0(λr)

1−ζ

(
1+ λ 2

r
3

)−1 , (4.35a)

ζ = c−
Λ2

z

3
, (4.35b)

Λz =
sin(λzΣt∆z/2)

Σt∆z/2
. (4.35c)

The maximum and minimum values of ω1(λr,ζ ), for 0≤ λr < ∞ and 0≤ Λz ≤ (Σt∆z/2)−1 must be determined to be

used in Eq. (4.32b) to obtain the optimum relaxation factor. Here, λr is the spatial frequency in the radial direction.

Unfortunately, extremum values of ω cannot be determined explicitly given the form of Eqs. (4.35). This function

is evaluated numerically, and these extrema can be seen in Figure 4.4. The extremum of the growth factor decreases

monotonically with the parameter ζ , and the maximum value of ω (occurring for ζ = c = 1) is given by ω ≈ 0.2247

(the standard result from traditional CMFD).

Figure 4.4. Growth factor ω for various radial frequencies λr for a sample of parametrized values ζ .

Figure 4.4 shows that when ζ > 0, the maximum value of ω1(λr,ζ ) is positive, and when ζ < 0, the minimum value

of ω1(λr,ζ ) is negative. For each ζ , let λext(ζ ) denote the value of λr at which these extrema occur. An approximate
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relationship between λext and ζ , obtained by curve fitting, is given by:

λext ≈ S+M(F−ζ )P,

S = 1.93801895412889, M = 1.88037759461481,

F = 1.07821249297909, P = 0.487975837139675.

(4.36)

Now that λext is known, ωmin can be calculated from Eqs. (4.35), and thus θopt can be calculated from Eq. (4.32b).

Traditional (unrelaxed) CMFD occurs for θ = 1; this method is conditionally stable based on the axial plane thickness.

This method is stable if ζ '−10.947, or

Σt∆z '
2√

3(c+10.947)
, (4.37)

but otherwise it is unstable. However, as is the case with source iteration, the optimum relaxation factor yields optimal

convergence and unconditional stability.

Figure 4.5. Spectral radius ρ for SI and CMFD vs. optical thickness τz = Σt∆z, with c =0.9.

Figure 4.5 illustrates that the region of conditional stability for the unrelaxed CMFD method is much larger than that

of unrelaxed source iteration. This improvement comes from the improved communication between the axial slices.

At each iterate, the slices receive information from the whole system, rather than just from neighboring slices. The

figure also shows that (i) the optimally relaxed SI scheme is unconditionally stable, (ii) the optimally relaxed CMFD

method is unconditionally stable, and (iii) the relaxed CMFD method is significantly more efficient that the relaxed

SI method. When the axial slice thicknesses tend to 0, the optimally relaxed SI and CMFD methods both become

increasingly slow in converging. However, the CMFD method always converges much faster than SI, and for realistic

problems, the axial slice thicknesses are not small enough to be a practical concern.

The analysis above applies specifically to the 2D/1D Eqs. (4.26), which employ a finite-differenced Fick’s Law to

express the axial current on each axial slice edge in terms of the scalar fluxes in the slices above and below the edge.
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This simple axial solver is available in MPACT, but more sophisticated nodal diffusion and nodal P3 solvers are more

commonly used. When these nodal solvers are used instead of the finite-difference method described above, the

resulting discrete methods are stabilized, and there is no need for relaxation.

However, nodal diffusion solvers introduce complexity because they effectively couple each axial slice to more than

just its nearest neighbors. In MPACT, the full 1D axial solves are typically compromised by limiting the coupling

between axial slices to the sufficiently near neighbors. Although this reduces the algebra and the amount of data

that must be moved between processors, it has a negative effect on stability. However, it has been found that when

the under-relaxations described above are included, the iterations in MPACT become stable. Whether these under-

relaxation parameters are optimal for more complicated iteration schemes containing incomplete axial solves is an

open question. However, they do rigorously stabilize the iterations when the simplest axial solver in Eq. (4.27a) is

used.
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5. The Method of Characteristics Solution

Methodology

This chapter provides a detailed derivation of the method of characteristics (MOC) equations and introduces the

concepts and algorithms used in MPACT MOC solvers. A detailed derivation, which highlights important approxi-

mations at each step, is provided and is followed by a description of the algorithm for the iterative solution of these

equations. Then the techniques required to discretize a problem are described; these techniques are common to any

multi-dimensional MOC transport solver. The descriptions in this chapter are given for both 2D and 3D implementa-

tions.

5.1 2D Radial Solution Methodology by the MOC

The derivation of the MOC solution to the Boltzmann neutron transport equation starts with the steady-state, axially

integrated, multigroup discrete ordinates equations shown below. This combines the multigroup and discrete ordinates

approximations of Eq. (2.23) with Eq. (4.15) and does not assume isotropic scattering.

Ωx
∂ψk,m,g

∂x
(x,y)+Ωy

∂ψk,m,g

∂y
(x,y)+Σt,k,g(x,y)ψk,m,g(x,y)

=
G

∑
g′=1

MN

∑
m′=1

Σs,k,g′→g(x,y,ΩΩΩm′ ·ΩΩΩm)ψk,m′,g′(x,y)wm′

+
χk,g(x,y)

4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,k,g′(x,y)ψk,m′,g′(x,y)wm′

− 1
4π∆zk

[
Jz,k+1/2,g(x,y)− Jz,k−1/2,g(x,y)

]
,

x ∈ X ,y ∈ Y,k ∈ zk−1/2 ≤ z≤ zk+1/2,

1≤ m≤MN ,1≤ g≤ G, (5.1a)

ψk,m,g(x,y) = 0, (x,y) ∈ ∂V,ΩΩΩm ·nnn < 0. (5.1b)
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Next, the variable q is introduced to represent the right-hand side of Eq. (5.1) and simplify the notation going forward.

qk,m,g(x,y) =
G

∑
g′=1

MN

∑
m′=1

Σs,k,g′→g(x,y,ΩΩΩm′ ·ΩΩΩm)ψk,m′,g′(x,y)wm′

+
χk,g(x,y)

4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,k,g′(x,y)ψm′,g′(x,y)wm′

− 1
4π∆zk

[
Jz,k+1/2,g(x,y)− Jz,k−1/2,g(x,y)

]
, (5.2)

yielding

Ωx
∂ψk,m,g

∂x
(x,y)+Ωy

∂ψk,m,g

∂y
(x,y)+Σt,k,g(x,y)ψk,m,g(x,y) = qk,m,g(x,y). (5.3)

From here the MOC is applied to Eq. (5.3). This involves a transformation of the dependentvariables to the charac-

teristic direction, allowing one to rewrite the partial derivatives in Eq. (5.3) into a single total derivative. The variable

transformation is given by:

rrr = rrr0 + sΩΩΩ
r
m,

x(s) = x0 + sΩr
x

√
1−µ2

m,

y(s) = y0 + sΩr
y

√
1−µ2

m.

(5.4a)

Here r = (x,y) and ΩΩΩ
r
m = (Ωr

x,Ω
r
y) = (cosωm,sinωm). This leads to the characteristics form of Eq. (5.3).

dψk,m,g

ds
(rrr0 + sΩΩΩ

r
m)+

Σt,g (rrr0 + sΩΩΩ
r
m)√

1−µ2
m

ψm,g (rrr0 + sΩΩΩ
r
m) =

qm,g (rrr0 + sΩΩΩ
r
m)√

1−µ2
m

. (5.5)

which can be solved analytically using the integrating factor

exp

− s∫
0

Σt,k,g(rrr0 + s′ΩΩΩr
m)√

1−µ2
m

ds′

 .

This results in the following expression for ψ as the solution of the axially integrated, multigroup, discrete ordinates

transport equation required by the 2D/1D method outlined in Chapter 4.

ψk,m,g (rrr0 + sΩΩΩ
r
m) = ψk,m,g (rrr0)exp

− s∫
0

Σt,k,g(rrr0 + s′ΩΩΩr
m)√

1−µ2
m

ds′


+

s∫
0

qk,m,g (rrr0 + sΩΩΩ
r
m)exp

− s∫
s′

Σt,k,g(rrr0 + s′ΩΩΩr
m)√

1−µ2
m

ds′′

ds′, (5.6)

where

qm,g(rrr0 + sΩΩΩ
r
m) =

G

∑
g′=1

MN

∑
m′=1

Σs,g′→g(rrr0 + sΩΩΩ
r
m,ΩΩΩm′ ·ΩΩΩm)ψm′,g′(rrr0 + sΩΩΩ

r
m)wm′

+
χg(rrr0 + sΩΩΩ

r
m)

4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,g′(rrr0 + sΩΩΩ
r
m)ψm′,g′(rrr0 + sΩΩΩ

r
m)wm′ . (5.7)

In section 5.4, the discretization of Eq. (5.6) is described, and in Section 5.5 the iterative evaluation of the discretized

MOC equations to obtain its solution is explained. The following section first presents an analogous derivation for the

MOC solution in 3D.
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5.2 Method of Characteristics Solution of the Boltzmann Transport Equa-

tion in 3D

The derivation of the MOC solution to the Boltzmann neutron transport equation in 3D starts with the steady-state,

multigroup, discrete ordinates equation, Eq. (2.23), which is reproduced below for convenience.

ΩΩΩm ·∇∇∇ψm,g(xxx)+Σt,g(xxx)ψm,g(xxx) =
G

∑
g′=1

MN

∑
m′=1

Σs,g′→g(xxx,ΩΩΩm′ ·ΩΩΩm)ψm′,g′(xxx)wm′

+
χg(xxx)
4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,g′(xxx)ψm′,g′(xxx)wm′ ,

xxx ∈V,1≤ m≤MN ,1≤ g≤ G, (5.8a)

ψm,g(xxx) = 0, xxx ∈ ∂V,ΩΩΩm ·nnn < 0. (5.8b)

The variable q is introduced to simplify the right-hand side:

qm,g(xxx) =
G

∑
g′=1

MN

∑
m′=1

Σs,g′→g(xxx,ΩΩΩm′ ·ΩΩΩm)ψm′,g′(xxx)wm′

+
χg(xxx)
4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,g′(xxx)ψm′,g′(xxx)wm′ , (5.9)

yielding

ΩΩΩm ·∇∇∇ψm,g(xxx)+Σt,g(xxx)ψm,g(xxx) = qm,g(xxx). (5.10)

The MOC is then applied. The spatial and angular variables of Eq. (5.10), are transformed into the characteristic

direction using the following identities:

xxx = xîii+ y ĵjj+ zk̂kk, (5.11a)

ΩΩΩm = Ωx,miii+Ωy,m jjj+Ωz,mkkk, (5.11b)

xxx = xxx0+sΩΩΩm⇒


x(s) = x0 + sΩx,m,

y(s) = y0 + sΩy,m,

z(s) = z0 + sΩz,m.

(5.11c)

This leads to the characteristic form of Eq. (5.10), where the partial derivative can be replaced by the total derivative

because of the transformation to the characteristic direction:

dψm,g

ds
(xxx0 + sΩΩΩm)+Σt,g (xxx0 + sΩΩΩm)ψm,g (xxx0 + sΩΩΩm) = qm,g (xxx0 + sΩΩΩm) . (5.12)

Equation (5.11) can be solved analytically using the integrating factor:

exp

− s∫
0

Σt,g(xxx0 + s′ΩΩΩm)ds′

 ,
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resulting in the following expression for ψ:

ψm,g (xxx0 + sΩΩΩm) = ψm,g (xxx0)exp

− s∫
0

Σt,g(xxx0 + s′ΩΩΩm)ds′


+

s∫
0

qm,g (xxx0 + sΩΩΩm)exp

− s∫
s′

Σt,g(xxx0 + s′′ΩΩΩm)ds′′

ds′, (5.13)

and q:

qm,g(xxx0 + sΩΩΩm) =
G

∑
g′=1

MN

∑
m′=1

Σs,g′→g(xxx0 + sΩΩΩ0,ΩΩΩm′ ·ΩΩΩm)ψm′,g′(xxx0 + sΩΩΩ0)wm′

+
χg(xxx0 + sΩΩΩ0)

4πkeff

G

∑
g′=1

MN

∑
m′=1

νΣ f ,g′(xxx0 + sΩΩΩ0)ψm′,g′(xxx0 + sΩΩΩ0)wm′ . (5.14)

Equation (5.13) is the solution of the characteristic form of the multigroup discrete ordinates transport equation in

3D. Note that Eq. (5.13) differs from Eq. (5.6) only in the argument of the exponential, and that Eq. (5.7) and (5.14)

are identical for their respective spatial dimensionality. In the following, Section 5.3, approximations to allow for the

evaulation of the integrals in Eq. (5.13) are given. Section 5.4 describes the approaches to discretizing this equation

for its numerical solution in detail. The approximation and discretization of Eq. (5.13) is essentially the same for

Eq. (5.6).

5.3 Approximations of the Characteristics Transport Equation

5.3.1 Constant Material Properties in a Discrete Region

To discretize the spatial domain, the problem is divided into discrete spatial regions, and within each region, it is

assumed that the material properties are spatially constant. This spatial discretization, as illustrated in Figure 5.1,

leads to a spatial discretization scheme that is first-order accurate.

With these assumptions, Eq. (5.6) and (5.7), or similarly , Eq. (5.6) and (5.7), reduce to the following equations for

each characteristic ray k passing through each discrete region i:

ψ
out
k,i,g,m,n = ψ

in
k,i,g,m,n exp

(
−Σt,k,i,gsk,i,m,n√

1−µ2
m

)
+

sk,i,m,n∫
0

qk,i,g,m(s′)exp

(
−

Σt,k,i,g(sk,i,m,n− s′)√
1−µ2

m

)
ds′, (5.15)

qk,i,g,m(s) =
G

∑
g′=1

M

∑
m′=1

Σs,k,i,g′→g(ΩΩΩ
r
m′ ·ΩΩΩ

r
m)ψk,i,g′,m′(s)wm′

+
χk,i,g

4π

G

∑
g′=1

νΣ f ,k,i,g′
M

∑
m′=1

ψk,i,g′,m′(s)wm′ ,0≤ s≤ sk,i,m,n. (5.16)
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Figure 5.1. Spatial discretization with constant properties

In Eq. (5.15), the shorthand notation,

ψ
in
k,i,g,m,n = ψk,i,g,m,n(rrr0) = ψk,i,g,m,n(s = 0),

and

ψ
out
k,i,g,m,n = ψk,i,g,m,n(rrr0 + sk,i,m,nΩΩΩm) = ψk,i,g,m,n(s = sk,i,m,n),

is used. For adjacent regions i and i+1, the identity

ψ
out
k,i,g,m,n = ψ

in
k,i+1,g,m,n, (5.17)

is also used.

5.3.2 Flat Source Approximation

Next, the source, qk,i,g,m(s), is assumed to be constant within each discrete spatial region. This is commonly referred

to as the flat source approximation. It is the simplest approximation for the spatial dependence of the source, and is

accurate in the fine limit of the spatial mesh.

Other approximations (e.g., linear and quadratic approximations) to the space- dependence of the source have been

developed, but for this work, only the flat source approximation is considered. With the flat source approximation, the

space-dependent source in each region is replaced by a constant cell-average source, and the remaining integral over
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s′ in Eq. (5.15) can be evaluated analytically. This leads to the following equations:

ψ
out
k,i,g,m,n = ψ

in
k,i,g,m,n exp

(
−Σt,k,i,gsk,i,m,n√

1−µ2
m

)
+

qk,i,g,m

Σt,k,i,g

[
1− exp

(
−Σt,k,i,gsk,i,m,n√

1−µ2
m

)]
, (5.18)

qk,i,g,m =
χk,i,g

4πkeff

G

∑
g′=1

νΣ f ,k,i,g′
M

∑
m′=1

wm′ψk,i,g′,m′ +
G

∑
g′=1

M

∑
m′=1

wm′Σs,k,i,g′→g(ΩΩΩm′ ·ΩΩΩm)ψk,i,g′,m′ . (5.19)

Equation (5.19) introduces a new term, ψk,i,g,m, the region-averaged angular flux. This is computed using the follow-

ing:

ψ i,g,m =

∑
n∈i

ψ̃k,i,g,m,nsk,i,m,nδAm,n

∑
n∈i

sk,i,m,nδAm,n
. (5.20)

Here, δAm,n is the cross-sectional area of the characteristic ray (illustrated in Figure 5.1), and ψ̃k,i,g,m,n is the segment-

averaged angular flux, defined by:

ψ̃k,i,g,m,n =

sk,i,m,n∫
0

ψk,i,g,m(s′)ds′

sk,i,m,n∫
0

ds′
⇒

ψ in
k,i,g,m,n−ψout

k,i,g,m,n

Σt,k,i,gsk,i,m,n
+

qk,i,g,m

Σt,k,i,g
. (5.21)

Eqs. (5.18) and (5.21) are the fundamental discretized MOC equations that must be evaluated to obtain a solution of

the angular flux for a given source q.

5.3.3 Isotropic Scattering Source Approximation

The final approximation is the treatment of the scattering source. The usual way to represent this source is to expand the

differential scattering cross section as an infinite series of Legendre polynomials of the cosine of the scattering angle

to account for anistropic scattering. For LWR analysis, linearly anistropic scattering is often sufficiently accurate, but

it can take significantly more computational resources to explicitly treat anisotropic scattering. Therefore, it is quite

common to formulate an isotropic source with some approximation. This subsection, discusses this approximation for

problems independent of the spatial discretization (the subscripts i and k are ommitted).

In the P1 scattering approximation, the source term for energy group g is approximated as:

qg = q0,g +q1,g, (5.22a)

q0,g =
1

4π

(
∑
g′

Σs0,g′→gφg′ +χg ∑
g′

νΣ f ,g′φg′

)
, (5.22b)

q1,g(ΩΩΩ) =
3

4π

∑
g′

Σs1,g′→g

∫
4π

(ΩΩΩ ·ΩΩΩ′′′)ψg′(ΩΩΩ
′)dΩΩΩ

′

 , (5.22c)

where q0,g is the isotropic source that includes the P0 scattering and fission sources, q1,g is the linearly anisotropic

scattering source, and ψg(ΩΩΩ) is the regional angular flux determined by Eq. (5.20). The anisotropic scattering source
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in Eq. (5.22) can be further simplified by inserting the net currents:

q1,g(ΩΩΩ) =
3

4π

(
∑
g′

Σs1,g′→g(ΩΩΩ · JJJg)

)
, (5.23)

where

JJJg = (Jx,g,Jy,g,Jz,g),

and the elements of JJJ are defined by Eq. (4.6) and Eq. (4.4) The previous equations indicate that for the P1 scattering

source approximation, the net currents and the scalar flux must be stored in order to determine the anisotropic scattering

source.

For many applications, a suitable approximation is applied that replaces a linearly anisotropic scattering operator by

an isotropic scattering operator with approximate transport-corrected cross sections. One such approximation is the

outscatter method [94]. In the outscatter method, the quantity µ̄0Σs is subtracted from both the total scattering cross

section Σs and the diagonal elements of the G×G scattering matrix. Here, µ̄0 is the mean cosine of the scattering

angles. The resulting transport-corrected cross sections for the outscatter method are

Σ
tr
s,g = (1− µ̄0)Σs,g = Σs0,g−Σs1,g, (5.24a)

Σ
tr
s,g′→g = Σs0,g′→g (for g 6= g′), (5.24b)

Σ
tr
s,g→g = Σs0,g→g− µ̄0,gΣs0,g = Σs0,g→g−Σs1,g. (5.24c)

The P1 anisotropic scattering cross section is the sum of the differential scattering cross sections, namely:

Σs1,g = ∑
g′

Σs1,g′→g. (5.25)

The transport cross section is now defined as:

Σtr,g = Σt,g−Σs1,g, (5.26)

and it replaces the total cross section in Eq. (5.18). The outscatter method provides a suitable approximation for cross

sections of heavier elements. For lighter elements, the inscatter or inflow correction is used, except for hydrogen,

where the neutron leakage conservation (NLC) provides better accuracy. Like the outscatter method, these two meth-

ods attempt to approximate an anisotropic scattering operator with an isotropic scattering operator. More information

regarding these methods can be found in a publication by Yee (2016) [96].

The use of transport-corrected cross sections converts an anisotropically scattering system into an approximate isotrop-

ically scattering system. This allows the source term of Eq. (5.19) to be written as follows:

qtr
g =

χg

4πkeff

G

∑
g′=1

νΣ f ,g′φg′ +
1

4π

G

∑
g′=1

Σ
tr
s0,g′→gφg′ . (5.27)

where φg′ is the scalar flux computed as

φg =
MN

∑
m′=1

ψ̄i,g,mωm. (5.28)

CASL-U-2019-1874-001 38 Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

Thus, the use of transport-corrected cross sections eliminates the additional computational requirements necessary to

treat the anisotropic scattering source explicitly.

5.4 Discretization of the Characteristics Equations

In Chapter 2, several different discretization methods were introduced for the different variables of the phase space.

The discretization techniques for energy (the multigroup approximation) and angle will not be discussed in this section

since they are not specific to MOC. The spatial discretization is more or less described in subsections 5.3.1 and 5.3.2.

The focus of this section is on the specific discretization techniques required by MOC.

The fundamental discretization in the MOC is the representation of the flight paths (characteristic tracks) of the neu-

trons with a set of rays that traverse the problem domain. This is illustrated in Figure 5.2. The end goal is to determine

the segment lengths from each ray that pass through each discrete region, which are then used as the variable sk,i,m,n

in the evaluation of Eqs. (5.18), (5.20), and (5.21). The process of sk,i,m,n is commonly referred to as ray-tracing.

Figure 5.2. Characteristic rays intersecting a set of discrete spatial regions.

In general, for a ray-tracing algorithm, one may choose any set of rays as long as the intersection between a ray and

the spatial region boundaries can be determined. Sufficient coverage of the problem domain by the rays is required for

good accuracy in the solution. Several possible choices may be made in the design of the ray-tracing algorithm. Those

choices specific to the algorithm in MPACT are discussed in the remainder of this section.
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For LWR analysis, it is possible to take advantage of the fact that reactors generally have a high degree of regularity

in their geometry when developing the ray-tracing algorithm. Considerable computational savings are possible by

modeling only a small subdomain of the reactor that exhibits a unique geometry and then constructing ray-tracking

information for the entire domain by replicating this information for the whole core. This technique, which has several

names (cyclic ray-tracing, direct neutron path linking, modular ray-tracing), is herein referred to as modular ray-

tracing and is illustrated in Figure 5.3, which has nine ray-tracing modules denoted as black squares. The modular

rays, depicted as blue lines, are defined only within the ray-tracing module and connect at the ray-tracing module

boundaries. The long ray shown by the red line extends through the entire problem domain and consists of a particular

sequence of modular rays.

Figure 5.3. Modular ray-tracing concept in 2D.

The use of modular ray-tracing introduces new requirements regarding the choice of the angles, and it also creates other

subtle issues. The first requirement for modular ray-tracing is that a structured grid can be overlaid on the problem

geometry. For LWR problems, this is a Cartesian grid, and ideally, it will isolate the different, unique geometries of

the subdomains. The next requirement is that for rays with a given angle, there must be an equal integer number of ray

intersections on opposing surfaces of a ray-tracing module.

This second requirement is most commonly satisfied by using equally spaced rays within a given angle, although this

need not be the case. Furthermore, when modular ray-tracing is used an additional step is required in the setup to

determine connection information for the modular rays so that a long ray can be tracked across the entire problem

domain. The computational advantages of modular ray-tracing can be considerable. If modular ray-tracing is not

used, it can increase the storage requirements of the ray-tracing data by a factor of O(107) for a full core pressurized

water reactor (PWR) problem solved with 3D MOC. If quarter assembly modular ray-tracing is used, then the savings

in memory requirements could be as much as O(105) for a full core PWR for 3D MOC.
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The next detail of the ray-tracing algorithm is the determination of the directions of flight that will be used for the

rays. Since the discrete ordinates approximation described in Section 2.3 is used, it is logically consistent to use

these as the directions of flight for the rays. To obtain accurate solutions, the discrete directions of flight should be

obtained from a quadrature that minimizes the error of the quadrature approximation for the integration of functions

of angle. However, quadratures that minimize the integration do not necessarily satisfy the modularity condition

described previously. Thus, the approach in MPACT is to start from an existing angular quadrature than introduces

small perturbations to the discrete angles so that they satisfy the modularity condition. This is analogous as finding the

rational number closest to the quadrature direction that produces a ray spacing smaller than the one requested by the

input. The quadrature weights are not updated once the new directions are chosen, so the possibility exists, especially

for very coarse ray spacings, to introduce non-trivial errors into the angular quadrature/discretization, so care must be

taken.

Once the directions of flight are chosen that satisfy the modularity conditions, it is necessary to set up the rays for a

given angle. Each spatial region should be intersected by at least one ray from each angle, and in the ideal case, each

region would be intersected by multiple rays from each angle. In MPACT, equally spaced rays are used to minimize

the need to store ray-dependent quantities such as the cross sectional area data. Instead of storing the discrete cross

sectional area of each characteristic ray in a problem, these data can simply be stored once for all rays or for all rays

of a given angle. A potential disadvantage of using uniform rays, however, is that extra rays may be placed in regions

that do not necessarily require them. This is illustrated in Figure 5.4 by having many rays near the diameter of the pin

cell. One thicker ray would likely be sufficient here.

Figure 5.4. Uniformly spaced characteristic rays through a pin cell.

In addition to storing the cross sectional area of the rays, there is a choice of whether or not to store other ray-

tracing data, such as the segment lengths and mapping of ray segment indices to region indices). This information

can be computed on-the-fly as a ray is swept during the transport sweep, or it can be stored and accessed. In this

case, a tradeoff between increased memory storage and repeated computations must be optimized. The choice that is

made almost invariably for any 2D MOC implementation is to compute the ray-tracing information once and store it.

However, for 3D MOC, some combination may be optimal. When storing the ray-tracing data, this has the benefit of
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decoupling the sweep algorithm from the ray-trace algorithm, which allows each to be further optimized and developed

independently. Another benefit of storing the ray-tracing data is that during a normal calculation, on the order of

1,000 sweeps can be performed, and each sweep may involve iterating over tens or hundreds of millions of rays, so

even the slightest overhead from the repeated computation of the ray-tracing data will substantially increase the total

computation time. However, the memory requirements for storage can become prohibitive, particularly for 3D, so

other design choices for the algorithm may be made to address this issue in the future. Despite the large memory

requirements for storing the ray tracing data, this is the current approach used in MPACT for 2D and 3D.

The final consideration in the MOC discretization involves integrals over volumes. This relates specifically to Eq. (5.20).

For non-cartesian flat source regions, the integral (sum) of the segment volumes are an approximation of the region

volume. This is shown in Figure 5.5. This is generally a problem of numerical integration stemming from the discrete

n

1n

1n

2n

2n

Figure 5.5. Numerical integration of a region volume by ray segments.

widths of the rays. As the limit of the ray spacing approaches zero, the sum of the segment volumes within the region

will equal the region volume. However, this usually requires ray spacings that are too fine to be used for practical

calculations, so an alternative approach is sought. In MOC codes, segment lengths within a given region are adjusted

so that the region volumes are integrated exactly. This also sometimes referred to as segment renormalization. The

segment renormalization can be done several ways. Two common approaches are to renormalize the segment lengths

where (i) the renormalization is performed for each angle separately, (ii) the renormalization is computed for all angles.

These renormalizations are given by Eqs. (5.29) and (5.30), respectively:

s̄k,i,m,n = sk,i,m,n

 Vi

∑
n∈i

sk,i,m,nδAk,m

 , (5.29)

s̄k,i,m,n = sk,i,m,n

 4πVi

∑
m

∑
n∈i

sk,i,m,nωmδAk,m

 , (5.30)

where Vi is the true volume of region i, sk,i,m,n is the length of the nth ray in direction m and plane k, and δAk,m is

the distance between rays (ray-spacing) in direction m. The renormalized segments, s̄k,i,m,n, are used in Eqs. (5.18),

(5.20), and (5.21). Thus, the optical thicknesses of the regions are modified. While this approach is common, it is
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certainly questionable in this regard. Note that in addition to renormalizing the segment lengths, no renormalization

can be done, so there may be a slightly higher error from an inadequate spatial discretization.

Experience suggests that the normalization of Eq. (5.29) may be more sensitive to the ray spacing, especially if the

problem contains thin annular spatial mesh regions. This problem arises because a specific angle might not have many

tracks within a single region, resulting in a large volume correction. To address this issue, the renormalization can be

performed on the integral (sum) over all angles, Eq. (5.30), rather than once for each angle, as in Eq. (5.29), or it can be

neglected entirely. The Eq. (5.30) method helps remedy some of the sensitivities observed using the per-angle method.

Furthermore, in problems with low void regions not performing any renormalization or using the renormalization of

Eq. (5.29) may lead to calculation stability issues. The renormalization method of Eq. (5.30) appears to be the least

sensitive to ray spacing for the approaches mentioned and may generally be the most robust. However, for spatially

higher order source formulations, it does not preserve the particle balance. The default method in MPACT performs no

volume correction and leaves the segment lengths unadjusted. In examining a subset of problems from the validation

suite, not performing a volume correction was shown to provide the best results.

5.5 Iteration Schemes

This section describes the most basic iteration scheme for obtaining the MOC solution of the transport equation.

The focus is primarily on how the MOC iteration is performed. The numerous other iteration schemes in MPACT

are summarized in Chapter 3 and described in detail in other parts of this manual. However, this section describes the

source iteration procedure, and then the implementation of MOC to obtain a solution. Lastly, the choice of convergence

criteria to be used to determine when to stop iterating is described.

5.5.1 Source Iteration

The most basic iteration scheme for solving the transport equation is source iteration. As a result of the approximations

described in Section 5.3, the primary iterative unknown is the scalar flux and not the angular flux. Source iteration

for eigenvalue problems is often considered a two-level iteration scheme with an inner and outer iterations. The inner

iteration assumes a fixed source and converges the self-scattering term, while the outer iteration performs an update of

the eigenvalue. To facilitate this iteration scheme, the computation of the source is split into two parts:

q̄tr
g,i =

1
4π

(
Qext,i,g +Σ

tr
s0,i,g→gφi,g

)
, (5.31)

where

Qext,i,g =
G

∑
g′=1,g′ 6=g

Σ
tr
s0,i,g′→gφi,g′ +

χi,g

k

G

∑
g′=1

νΣ f ,i,g′φi,g′ . (5.32)
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In the 1-group fixed source problem, the known external source Qext,i,g is the source from fission and inscatter, or

scattering from group g′ 6= g to group g, and is a function of the scalar flux. Equation (5.31) is updated during the

inner iteration, and Eq. (5.32) is updated during the outer iteration. The inner iteration for a 1-group problem is given

by Algorithm 5.1.

Algorithm 5.1: Iterative algorithm for the MOC solution of 1-group fixed source problem (inner iteration)
1: Guess initial source.

2: while not converged do

3: Compute outgoing angular fluxes by evaluating Eq. (5.18) for all segments.

4: Compute segment-averaged angular fluxes by evaluating Eq. (5.21) for all segments.

5: Compute region-wise angular fluxes by evaluating Eq. (5.20) for all regions.

6: Compute scalar flux by evaluating Eq. (5.28) for all regions.

7: Update 1-group source by evaluating Eq. (5.30) for all regions.

8: end while

This first 4 steps of Algorithm 5.1 are typically functionalized and referred to as an MOC kernel. In functional form,

this algorithm is presented as: (
ψ

in,(l+1)
g ,φ

(l+1)
g

)
= f

(
ψ

in,(l)
g , q̄(l)

g

)
, (5.33)

In Eq. (5.33), ψ
in,(l)
g is a vector of the discrete incoming angular flux boundary conditions in all space and angle for a

single group g. q̄(l)
g is a vector of the group sources computed using Eq. (5.31) for all regions, φ

(l)
g is a vector of the

scalar fluxes for all regions, and l is the inner iteration index. While this description assumes a 1-group MOC kernel, a

multigroup kernel for solving this fixed source problem is also straightforward and more efficient, as will be discussed

later in this chapter.

In Eq. (5.32), keff is the eigenvalue of the system and must also be determined as a part of the solution. This is

traditionally calculated using the iterative power method, that is the basis of the outer iteration. The general form of

the eigenvalue value problem in reactor physics can be written in operator notation as:

Tφ =
1

keff
Fφ , (5.34)

where F represents the fission operator and T represents the streaming-plus-collision operator. The power method to

solve Eq. (5.34) consists of the following iterative scheme:

φ
(`+1) = T−1 1

k(`)eff

Fφ
(`), (5.35)

k(`+1)
eff =

‖Fφ (`+1)‖1
1

k(`)eff

‖Fφ (`)‖1
. (5.36)

For the outer iteration, denoted by the index `, the total fission source is computed as shown in Eq. (5.37), and
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Eq. (5.32) is rewritten as shown in Eq. (5.38).

Ψ
(`)
i =

1

k(`)eff

G

∑
g′=1

νΣ f ,i,g′φ
(`)
i,g′ , (5.37)

Q(`)
ext,i,g = χ

(`)
i,g Ψ

(`)
i +

G

∑
g′=1,g′ 6=g

Σs0,i,g′→gφ
(`)
i,g′ . (5.38)

The equation to update the eigenvalue based on the power method is shown in Eq. (5.39), where Vi is the region

volume:

k(`+1)
eff =

I
∑

i=1
Vi

G
∑

g′=1
νΣ f ,i,g′φ

(`+1)
i,g′

I
∑

i=1
ViΨ

(`)
i

. (5.39)

This overall iterative procedure for solving the eigenvalue problem is shown in Algorithm 5.2.

Algorithm 5.2: Iterative algorithm for the MOC solution of steady-state eigenvalue problem (outer iteration)
1: Guess initial keff and scalar flux.

2: while not converged do

3: Compute total fission source by evaluating Eq. (5.32) for all regions.

4: for all groups do

5: Compute source for group g by evaluating Eq. (5.31) for all regions.

6: Solve fixed source problem for group g with Algorithm 5.1.

7: end for

8: Update keff by evaluating Eq. (5.39) for all regions.

9: end while

The 1-group iteration scheme presented here has the advantage of reducing memory usage by allowing the transport

method to only allocate data for a single group, with the exception of the boundary condition. In the loop over groups

in Algorithm 5.2, the inscatter source of Eq. (5.32) is also updated in a Gauss-Seidel fashion. This helps to improve

convergence for reactor problems because most LWRs are thermal reactors, and the physics of the slowing down

source primarily involves the downscatter of neutrons.

However, in a multigroup formulation, where the scattering source is updated by a Jacobi iteration, approximately a 2x

speed-up over a 1-group kernel is expected. Additionally, better stability properties for the transport correction used

in the isotropic scattering approximation are observable.

5.5.2 Convergence Criterion for Source Iteration

In MPACT, the solution of the MOC equations are obtained iteratively. Therefore, criteria for convergence must

be defined. MPACT primarily solves steady-state eigenvalue calculations, and for these types of calculations, two
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convergence criteria are defined. First, the eigenvalue keff must be sufficiently converged. This is determined by

comparing the estimates of keff from two consecutive iterations.∣∣∣k(`)eff − k(`−1)
eff

∣∣∣< εkeff . (5.40)

Second, the shape of the flux must be sufficiently converged. This requirement is considered to be satisfied when the

following inequality holds: √√√√√ 1
N f i

∑
i

∑
g

F(l)
i,g

F̄(l)
−

F(l−1)
i,g

F̄(l−1)

2

< εφ . (5.41)

Here, εkeff and εφ are user-specified constants (e.g., 10−4), N f i is the number of spatial cells in the fine mesh with

fission, and

F̄(`) ≡∑
i

∑
g

F(`)
i,g ,

F(`)
i,g ≡ νΣ f ,i,gφ

(`)
i,g .

When these convergence criteria are satisfied, one can expect the error in keff to be O(εkeff) and the root-mean-square

(RMS) error in φ can be expected to be O(εφ ).

5.5.3 MOC Sweep Procedure

There are several ways one can choose to loop over the segments in the MOC method. MPACT employs a bidirectional

sweep, which loops over the angles, and within each angle, it loops over all the long rays. This type of sweep makes it

easier to order all the associated data structures to ensure good cache coherency. If modular ray-tracing is performed,

then the long ray can be constructed once and swept for both the forward and backward directions (e.g., a bidirectional

sweep), further improving performance through better cache coherency. Figure 5.6 illustrates how the rays are be

swept sequentially for a bidirectional sweep.

This type of sweep ordering requires increased memory storage when there are reflective or periodic boundary condi-

tions as opposed to cyclic sweeping algorithms, and the convergence of the angular flux boundary condition will be

more like Jacobi than Gauss-Seidel, especially for the spatial domain decomposed problem.

5.5.4 Gauss-Seidel and Jacobi Inscatter Sweeping Algorithms

This section presents the theory of the 2D MOC sweeping algorithms in MPACT is presented for two inscatter-source

iteration schemes: Gauss-Seidel and Jacobi. In the Gauss-Seidel approach, as the MOC solver loops over groups, it

uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the

Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group.

Consequently, for the Jacobi iteration, the loop over groups can be moved from the outermost loop—as is the case
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Figure 5.6. Sequential sweep algorithm.

with the Gauss-Seidel sweeper—to the innermost loop. This can substantially improve efficiency by minimizing the

overhead of retrieving segment, region, and surface index information from the ray-tracing data.

Algorithm 5.3 outlines a more detailed description of the looping structure of a Gauss-Seidel transport sweep and the

tasks performed by each one-group MOC kernel. It can be seen in this figure that the loop over energy groups is the

outermost loop, and the source is updated as the loop progresses.
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Algorithm 5.3: Pseudocode for Gauss-Seidel sweeping with group on outermost loop
1: for each group (g from 1 to Ngroups) do

2: Setup source for group g (using updated flux solution from previous groups)

3: for each inner iteration (i from 1 to Ninners) do

4: for each azimuthal angle (a from 1 to Nangles) do

5: for each longray in angle a (l from 1 to Nlongrays(a)) do

6: Connect modular rays and determine coarse mesh surfaces

7: Calculate exponential values for each segment in longray l and group g

8: for each polar angle (p from 1 to Npolar) do

9: Gather incoming angular flux (ϕ in
l,p,g) at both ends of longray l

10: for each segment (s from 1 to Nsegments(l)) do

11: Evaluate forward direction:

12: Calculate outgoing angular flux (ψout
l,p,g)

13: Tally contribution to fine mesh scalar flux in region r1 (φg,r1)

14: Evaluate backward direction:

15: Calculate outgoing angular flux (ψout
l,p,g)

16: Tally contribution to fine mesh scalar flux in region r2 (φg,r2)

17: end for

18: Store outgoing angular flux (ψout
l,p,g)

19: for each coarse mesh surface intersection (c from 1 to Ncm) do

20: Tally surface flux and currents for coarse mesh surface c, group g

21: end for

22: end for

23: end for

24: end for

25: end for

26: end for

Alternatively, the multigroup flux used to construct the inscatter sources can be lagged, creating a Jacobi-like algorithm

in energy. It would be possible to implement this in a manner similar to the scheme outlined in Algorithm 5.3 by

moving the source setup outside of the loops entirely. However, some performance can also be gained by moving the

iteration over the groups g to the innermost loop (as shown in Algorithm 5.4). With the scheme in Algorithm 5.4, the

work performed to connect the modular rays and coarse mesh surface mapping is only completed once for all groups.

In contrast, the Gauss-Seidel approach requires that this work be performed once for each group. The potential

performance benefits of the Jacobi algorithm yielding a multigroup kernel could be worthwhile as long as the time to

set up the modular ray connections is a non-negligible fraction of the total runtime.
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Algorithm 5.4: Pseudocode for Jacobi sweeping with group on innermost loop
1: Setup source for all groups

2: for each inner iteration (i from 1 to Ninners) do

3: for each azimuthal angle (a from 1 to Nangles) do

4: for each longray in angle a (l from 1 to Nlongrays(a)) do

5: Connect modular rays and determine coarse mesh surfaces

6: Calculate exponential values for each segment in longray l and all groups

7: for each polar angle (p from 1 to Npolar) do

8: Gather incoming angular flux (ϕ in
l,p,g) at both ends of longray l

9: for each segment (s from 1 to Nsegments(l)) do

10: for each group (g from 1 to Ngroups) do

11: Evaluate forward direction:

12: Calculate outgoing angular flux (ψout
l,p,g)

13: Tally contribution to fine mesh scalar flux in region r1 (φg,r1)

14: Evaluate backward direction:

15: Calculate outgoing angular flux (ψout
l,p,g)

16: Tally contribution to fine mesh scalar flux in region r2 (φg,r2)

17: end for

18: end for

19: Store outgoing angular flux (ψout
l,p,g)

20: for each coarse mesh surface intersection (c from 1 to Ncm) do

21: Tally surface flux and currents for all groups for coarse mesh surface c

22: end for

23: end for

24: end for

25: end for

26: end for

There is also the potential to sweep over the groups multiple times, particularly over the energy groups with upscatter

cross section data. An additional loop in both figures would be included to account for this. In MPACT, the Jacobi

sweep only uses the fluxes at the beginning of the outer iteration to update the sources, so subsequent “upscatter”

iterations effectively perform more inner iterations over the thermal groups.

Though not shown here, the Jacobi approach does provide a substantial performance improvement, reducing the

amount of time spent in MOC by roughly a factor of two [80]. Results also indicate that the Jacobi scheme also re-

solves many convergence issues observed with transport-corrected isotropic scattering (TCP0), which had been a very
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significant issue in MPACT for several years. The current hypothesis is that the Jacobi algorithm effectively under-

relaxes the solution, allowing for a more controlled solution path, which is consistent with the relaxation approaches

suggested by Tabuchi et al. [85].
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6. 1D Axial Solution Methodology

Previous chapters presented the theory behind the 2D/1D method and the MOC used for the radial solvers in 2D/1D.

This chapter discusses several methods used in the axial solvers in MPACT, which are used on a pin-wise basis in

2D/1D. Included are the nodal expansion method (NEM), the source expansion nodal method (SENM), the spherical

harmonic (PN) method, and the discrete ordinate (SN) method.

The first part of the chapter discusses the primary governing equations and a comparison of one-node vs. two-node

schemes. In MPACT, the NEM and SENM approaches both use two-node kernels, while the PN and SN methods

leverage one-node kernels, so understanding both is important. In general, two-node approaches are preferred because

of their increased stability [62], but one-node kernels are sometimes necessitated by the method.

The 2D MOC solvers use a flat or linear source/flux approximation because the fine mesh regions used to discretize

each rod radially are relatively small, generally yielding ray segment lengths that are fractions of a centimeter. How-

ever, the axial discretization is usually in the 2–10 cm range, and a flat or linear approximation would yield significant

errors. To mitigate this, nodal methods typically employ 2nd–4th Legendre expansions to accurately represent the

intranodal spatial distributions of the source and flux. SENM, for example, goes a step further and incorporates two

hyperbolic coefficients into the flux expansion, in addition to a quartic Legendre expansion.

The following sections summarize the primary equations and concepts. More in-depth derivations of each of these is

available in the appendices of Stimpson’s dissertation [82].

6.1 One-Dimensional Axial Governing Equations

6.1.1 Transport-Based

The axial equations can be derived in by averaging the three-dimensional transport equation, Eq. (2.23), radially over

both x and y, as in Eq. (6.1), yielding Eq. (6.2). This leaves only a dependence in z, but with a radial transverse leakage

in the source (6.2d):
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ψ
XY
g,m(z,αm,µm) =

1
Axy

∫ xR

xL

∫ yR

yL

ψg,m(x,y,z,αm,µm)dydx, (6.1a)

Σ
XY
x,g (z) =

∫ xR
xL

∫ yR
yL

Σx,g(x,y,z)φ(x,y,z)dydx∫ xR
xL

∫ yR
yL

φ(x,y,z)dydx
, (6.1b)

µm
∂

∂ z
ψ

XY
g,m(z,αm,µm)+Σ

XY
t,g (z)ψ

XY
g,m(z,αm,µm) = q̃XY

g,m(z,αm,µm), (6.2a)

q̃XY
g,m(z,αm,µm) = qXY

g,m(z,αm,µm)+T LXY
g,m(z,αm,µm), (6.2b)

qXY
g,m(z,αm,µm) =

χg

4πkeff

Ng

∑
g′=1

νΣ
XY
f ,g′(z)φ

XY
g′ (z)+

1
4π

Ng

∑
g′=1

Σ
XY
s,g′→g(z)φ

XY
g (z), (6.2c)

T LXY
g,m(z,αm,µm) =−

√
1−µ2

m

Axy

{
cos(αm)

∫ yR

yL

(
ψg,m(xR,y,z,αm,µm)−ψg,m(xL,y,z,αm,µm)

)
dy

+ sin(αm)
∫ xR

xL

(
ψg,m(x,yR,z,αm,µm)−ψg,m(x,yL,z,αm,µm)

)
dx

}
.

(6.2d)

Here, αm and µm are the azimuthal and cosine of the polar angles corresponding to angle m, ψXY
g,m is the radially

integrated angular flux for group g and angle m, T LXY
g,m is the corresponding radial tranvserse leakage, and Axy is the

radial cross sectional area of each node.

Though the discrete ordinates approximation has already been made, αm and µm are included in the angular depen-

dence to make the angular integrations more clear. In reality, these integrals are replaced with weighted summations

over the discrete ordinates. Additionally, because of the separability assumed between the flux and cross sections, the

homogenized cross sections are obtained using flux and area weighting, though the fission spectrum is homogenized

using the fission source instead of the flux. For completeness, the total cross section should be angle-dependent and

homogenized using the angular flux, but a common approximation is to also homogenize it using the scalar flux. This

is done to save storage of both the angle-dependent cross sections and angular fluxes.

A variant of this approach is to integrate Eq. (6.2) azimuthally, Eq. (6.3), so that the equations maintain only polar

dependence. This formulation was used by Hursin in previous work with DeCART [47, 33]:

µm
∂

∂ z
ψ

XY,α
g,m (z,µm)+Σ

XY
t,g (z)ψ

XY,α
g,m (z,µm) = q̃XY

g,m(z,µm), (6.3a)

q̃XY,α
g,m (z,µm) = qXY,α

g,m (z,µm)+T LXY,α
g,m (z,µm), (6.3b)

qXY
g,m(z,µm) =

χg

2keff

Ng

∑
g′=1

νΣ
XY
f ,g′(z)φ

XY
g′ (z)+

1
2

Ng

∑
g′=1

Σ
XY
s,g′→g(z)φ

XY
g (z), (6.3c)
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T LXY,α
g,m (z,µm) =−

√
1−µ2

m

A

∫ 2π

0

{
cos(αm)

∫ yR

yL

(
ψg,m(xR,y,z,αm,µm)−ψg,m(xL,y,z,αm,µm)

)
dy

+ sin(αm)
∫ xR

xL

(
ψg,m(x,yR,z,αm,µm)−ψg,m(x,yL,z,αm,µm)

)
dx

}
dα,

(6.3d)

where

ψ
XY,α
g,m (z,µm) =

∫ 2π

0
ψ

XY
g,m(z,αm,µm)dα. (6.4)

The leakage term in Eq. (6.3d) can be also be averaged polarly to remove angular dependence for use in the azimuthally

integrated equations, Eqs. (6.3). The next subsection, which covers the diffusion-based axial solver, uses isotropic

radial transverse leakage, in which case Eq. (6.2d) has no angular dependence, as in Eq. (6.5):

T LXY
g,m(z) =−

1
2A

∫ 1

−1

√
1−µ2

m

∫ 2π

0

{
cos(αm)

∫ yR

yL

(
ψg,m(xR,y,z)−ψg,m(xL,y,z)

)
dy

+ sin(αm)
∫ xR

xL

(
ψg,m(x,yR,z)−ψg,m(x,yL,z)

)
dx

}
dαdµ.

(6.5)

All three of the transverse leakage equations – Eqs. (6.2d), (6.3d), and (6.5) – can be averaged over z, as in Eq. (6.6),

to use the angular fluxes from the radial solvers, Eq. (6.7):

ψ
Z
g,m(z,αm,µm) =

1
hz

∫ hT

hB

ψg,m(x,y,z,αm,µm)dz, (6.6)

where hz is the axial height of the node at plane z.

T LXY
g,m(z,αm,µm) =−

√
1−µ2

m

A

{
cos(αm)

∫ yR

yL

(
ψ

Z
g,m(xR,y,αm,µm)−ψ

Z
g,m(xL,y,αm,µm)

)
dy

+ sin(αm)
∫ xR

xL

(
ψ

Z
g,m(x,yR,αm,µm)−ψ

Z
g,m(x,yL,αm,µm)

)
dx

}
,

(6.7a)

T LXY,α
g,m (z,µm) =−

√
1−µ2

m

A

∫ 2π

0

{
cos(αm)

∫ yR

yL

(
ψ

Z
g,m(xR,y,αm,µm)−ψ

Z
g,m(xL,y,αm,µm)

)
dy

+ sin(αm)
∫ xR

xL

(
ψ

Z
g,m(x,yR,αm,µm)−ψ

Z
g,m(x,yL,αm,µm)

)
dx

}
dα,

(6.7b)
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T LXY,α,µ
g,m (z) =− 1

2A

∫ 1

−1

√
1−µ2

m

∫ 2π

0

{
cos(αm)

∫ yR

yL

(
ψ

Z
g,m(xR,y,αm,µm)−ψ

Z
g,m(xL,y,αm,µm)

)
dy

+ sin(αm)
∫ xR

xL

(
ψ

Z
g,m(x,yR,αm,µm)−ψ

Z
g,m(x,yL,αm,µm)

)
dx

}
dαdµ.

(6.7c)

6.1.2 Diffusion-Based Solvers

The diffusion-based axial sweepers (NEM/SENM) are formulated by radially averaging the three-dimensional dif-

fusion equation. The details of obtaining the diffusion equation from the transport equation are deferred to Chapter

7 to avoid duplication, but it is still important to at least present the 1D diffusion equation to better understand the

extensions made from that.

−Dg
d2φg(z)

dz2 +Σr,g(z)φg(z) =
χg(z)
keff

Ng

∑
g′=1

νΣ f ,g′(z)φg′(z)+
1

4π

Ng

∑
g′=1,g′ 6=g

Σs,g′→g(z)φg′(z)−T LXY
g (z), (6.8a)

T LXY
g (z) =

1
hx

(
JL,x,g(z)− JR,x,g(z)

)
+

1
hy

(
JL,y,g(z)− JR,y,g(z)

)
. (6.8b)

Here, Dg is the diffusion coefficient for group g, Σr,g is the removal cross section (total minus self-scatter), and J is

the current. Since the radial surfaces on which the currents exist span the entire plane, they effectively do not have an

axial dependence, so the leakage is more consistent with Eq. (6.9):

T LXY
g (z) =

1
hx

(
JZ

L,x,g− JZ
R,x,g

)
+

1
hy

(
JZ

L,y,g− JZ
R,y,g

)
. (6.9)

This is numerically equivalent to Eq. 6.7c.

6.2 One-Node vs. Two-Node

As previously mentioned, what MPACT defines as a node is simply a single axial mesh region of a single rod (fuel,

guide tube, control, or burnable poison rod). Two types of nodal kernels, which are the most basic component of a

solver, are primarily used in MPACT: one-node and two-node. In each of these kernels, the underlying physics is

the same and is determined by the flux and source expansions being used. However, the boundary conditions and

constraints differ in important ways. As a preference, the discussion and illustrations here relate to one- and two-node

systems along the x-axis (as opposed to z-axis for axial solvers). Therefore, when one refers to a “left” or “right” node,

as will be seen in the figures, it is directly related to a “bottom” or “top” node if considering the same along the z-axis.
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In the one-node formulation (Figure 6.1), the incoming partial currents (or angular fluxes for transport-based kernels)

are the prescribed boundary conditions, and the outgoing partial currents and flux distribution are output.

Figure 6.1. One-node kernel.

With the two-node kernels (Figure 6.2), the mesh-averaged scalar fluxes are used as a constraint, and the net current at

the interface and the flux distributions in both nodes are output. Additionally, the two-node kernels own two instances

of the intranode flux distribution (one for the left interface and one for the right interface). During the iteration process,

the two intranodal distributions will not necessarily agree, but they will agree at convergence.

Figure 6.2. Two-node kernel.

The fact that the two-node kernels do not allow the mesh-average scalar flux (zeroth moment) to change is beneficial

and considerably more stable. When incorporating the transverse leakage terms, which will be discussed in more

detail later, it is possible to encounter negative sources, that can drive the one-node kernels to non-physical negative

fluxes, whereas the two-node kernels can handle these more easily.

Unfortunately, two-node formulations are currently only available for the diffusion-based kernels, such as NEM and

SENM. If such a formulation were applied to the transport-based kernels, PN or SN , mesh-averaged angular fluxes

would need to be preserved, which are not available with the existing 2D/1D scheme. However, it is possible that a

two-node transport kernel could be used in something, such as the 2D/3D scheme, in which 2D-MOC and 3D-SN are

coupled [98].

Some exploratory work has been performed in MPACT to develop a hybrid P3 kernel that combines characteristics of

the one- and two-node solvers using a two-node formulation for the zeroth angular moment and a one-node formulation

for the second angular moment [84]. This capability has demonstrated some usefulness, but it has been observed to

encounter some convergence issues in certain situations.
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There are also other alternatives. The nTRACER code, for example, solves an entire axial rod in a single linear system

[49]. This technique provides a tighter coupling between the nodes, and the CMFD solve and can require fewer

iterations with the one-node kernels, but it requires more parallel communication.

6.3 Nodal Expansion Method (NEM)

In the nodal expansion method, the source is expanded with quadratic Legendre polynomials and the flux is expanded

with quartic polynomials [36], where ξ denotes the normalized spatial variable:

Q(ξ ) =
2

∑
i=0

qiPi(ξ ), (6.10a)

φ(ξ ) =
4

∑
i=0

aiPi(ξ ). (6.10b)

The coefficients (ai) are determined from the 0th through 2nd moment balance equations:

∫ 1

−1
Pn(ξ )

(
−ΣD

d2

dξ 2 φ(ξ )+Σrφ(ξ )−Q(ξ )

)
dξ = 0, (6.11a)

ΣD =
4D
h2 , (6.11b)

where D is the diffusion coefficient, h is the size of the mesh, and Σr is the removal cross section. This is used in

conjunction with the flux and current continuity enforcement:

φ1(1) = φ2(−1), (6.11c)

J1(1) = J2(−1). (6.11d)

The node-averaged flux can be preserved by forcing the zeroth moment value in the flux expansion to be the scalar

flux, as in Eqs. (6.12):

a1,0 = φ 1, (6.12a)

a2,0 = φ 2. (6.12b)

During an iteration, the flux coefficients are used to construct the source coefficients (qi) for the next iteration. Each

internal two-node problem solves an 8 × 8 linear system relating the information in the two node being simulated, as
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in Eq. (6.13). Here, 1 and 2 indicate the indices of the two nodes:

1 1 1 1 1 −1 1 −1

− 2D1
h1

−3 2D1
h1

−6 2D1
h1

−10 2D1
h1

2D2
h2

−3 2D2
h2

6 2D2
h2

−10 2D2
h2

−3ΣD1 −10ΣD1

Σr1 −15ΣD1

Σr1 −35ΣD1

−3ΣD2 −10ΣD2

Σr2 −15ΣD2

Σr2 −35ΣD2





φ1,1

φ1,2

φ1,3

φ1,4

φ2,1

φ2,2

φ2,3

φ2,4



=



−φ 1 +φ 2

0

q1,0−Σr1φ 1

q1,1

q1,2

q2,0−Σr2φ 2

q2,1

q2,2



.

(6.13)

While more explicit details of how this matrix is formed can be found in Stimpson’s dissertation [82], it is useful to

provide some understanding of how Eqs. (6.11) are used. For example, the top row corresponds to the flux continuity

equation, as shown in Eq. (6.11c), and the second row corresponds to the current continuity using J =−D d2φ(z)
dz2 . The

next three rows correspond to the 0th through 2nd moment balance equations per Eq. (6.11a) for the bottom node and

the final three for the top node.

Boundary nodes are solved in a slightly different manner since one of the nodes would technically be outside the

system. In these cases, special 4 × 4 one-node linear systems are formulated, taking into account the boundary

condition as appropriate:



(D
h +α

) (
3 D

h +α
) (

6 D
h +α

) (
10 D

h +α
)

−3ΣD −10ΣD

Σr −15ΣD

Σr −35ΣD




a1

a2

a3

a4

=


−φ 1 +φ 2

q0−Σr1φ 1

q1

q2

, (6.14)

where α is the albedo boundary condition at the system boundary.

A single sweep with the NEM solver involves looping over the pin-wise coarse mesh cells, generally solving for two

separate two-node problems: one in which the current cell is the lower cell of the two nodes, and one in which it is the

upper cell. For boundary cells, one of these two-node solves is replaced with a call to the boundary kernel instead.

With two-node kernels, the cell-averaged scalar flux is a constraint and does not change, so multiple inner iterations

do not change any part of the solution; therefore, only one inner iteration is executed.
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6.4 Source Expansion Nodal Method (SENM)

With SENM, both the source, Eq. (6.15a), and the flux, Eq. (6.15b), use a quartic Legendre expansion. However, the

flux also has two additional hyperbolic terms [97]:

Q(ξ ) =
4

∑
i=0

qiPi(ξ ), (6.15a)

φ(ξ ) = Asinh(κξ )+Bcosh(κξ )+
4

∑
i=0

aiPi(ξ ), (6.15b)

κ =
h
2

√
Σr

D
. (6.15c)

In the previous set of equations, the flux has a homogeneous solution – Asinh(κξ )+Bcosh(κξ ) – and a particular

solution –
4
∑

i=0
aiPi(ξ ). The particular solution coefficients can be determined by solving the 0th through 4th order

moment balance equations. The homogeneous coefficient B for each node is given from the node-averaged flux and

zeroth moment particular coefficient a0:

B =
κ

sinh(κ)
(
φ −a0

)
. (6.16)

Having solved the particular coefficient (ai) and homogeneous B coefficients, the homogeneous A coefficients for the

two nodes, A1 and A2, can then be calculated by enforcing flux and current continuity at the interface of the two nodes,

as in Eqs. (6.11c) and (6.11d).

Unlike with the NEM formulation, the SENM solver does not set up a linear system to determine the unknown flux

coefficients. Instead, the particular coefficients are solved first since they only depend on the source moments (qi).

Then the cosh coefficients (B) are found, and both ai and B are used to determine the sinh coefficients (A). Also, the

flux expansion is projected onto a quartic Legendre expansion (without hyperbolic coefficients) when formulating the

source moment values. However, the SENM sweeping strategy is very similar to NEM.

6.5 Spherical Harmonics (PN)

With this method, the angular flux, which has been azimuthally integrated for a 1D representation, is assumed to have

a Legendre expansion with respect to the cosine of the polar angle (µ) [70]:

ψg(x,µ) =
Nmom

∑
m=0

2m+1
2

ψm,g(x)Pm(µ). (6.17)

By substituting Eq. (6.17) into the transport equation, multiplying by Pn(µ), and integrating over µ , Eq. (6.18a) can

be obtained, which describes the relationship between each of the angular moments:

d
dx

[ n
2n+1

ψn−1,g(x)+
n+1

2n+1
ψn+1,g(x)

]
+Σt,g(x)ψn(x,g) = Σsn,g→gψn,g(x)+Qg(x)δn,0. (6.18a)
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It also yields the corresponding boundary conditions of (Eqs. (6.18b) and (6.18c)) for the left and right interfaces,

respectively:
Nmom

∑
m=0

2m+1
2

(∫ 0

−1
µPn(µ)Pm(µ)dµ

)
ψm,g(0) =

∫ 1

0
µPn(µ)ψ

b
g (µ)dµ, (6.18b)

Nmom

∑
m=0

2m+1
2

(∫ 0

−1
µPn(µ)Pm(µ)dµ

)
ψm,g(X) =

∫ 0

−1
µPn(µ)ψ

b
g (µ)dµ. (6.18c)

In MPACT, P3 and P5 have been implemented and can be formulated to wrap the one-node NEM kernel by normalizing

spatially (ξ ) and rearranging the boundary conditions slightly. With this setup, PN handles the angular distribution,

and NEM handles the spatial distribution. Once the equations for the 0th through 3rd moments have been found, the

first and third can be solved and substituted into the 0th and 2nd moment equations. These can be further simplified

into Eqs. (6.19) and (6.20), which show the final equations for the P3 kernel:

Zeroth-Moment

−
4D0,g

h2
d2

dξ 2 Φ0,g(ξ )+(Σt,g−Σs0,g→g)Φ0,g(ξ ) = Qg(ξ )+2(Σt,g−Σs0,g→g)Φ2,g(ξ ), (6.19a)

−
D0,g

h
d

dξ
[Φ0,g(−1)]+

1
4

Φ0,g(−1) =
∫ 1

0
µψ

b
L,g(µ)dµ +

3
16

Φ2,g(−1), (6.19b)

D0,g

h
d

dξ
[Φ0,g(1)]+

1
4

Φ0,g(1) =
∫ 0

−1
|µ|ψb

R,g(µ)dµ +
3

16
Φ2,g(1). (6.19c)

Second-Moment

−
4D2,g

h2
d2

dξ 2 [Φ2,g(ξ )]+

(
9
5

Σt,g−
4
5

Σs0,g→g

)
Φ2,g(ξ )

=−2
5

(
Qg(ξ )− (Σt,g−Σs0,g→g)Φ0,g(ξ )

)
,

(6.20a)

−
D2,g

h
d

dξ
[Φ2,g(−1)]+

1
4

Φ2,g(−1) =
3
5

∫ 1

0
P3(µ)ψ

b
L,g(µ)dµ +

3
80

Φ0,g(−1)− 1
80

Φ2,g(−1), (6.20b)

D2,g

h
d

dξ
[Φ2,g(1)]+

1
4

Φ2,g(1) =
3
5

∫ 0

−1
P3(µ)ψ

b
R,g(µ)dµ +

3
80

Φ0,g(1)−
1

80
Φ2,g(1), (6.20c)

where

Φ0,g(ξ ) = ψ0,g(ξ )+2ψ2,g(ξ ), (6.21a)

Φ2,g(ξ ) = ψ2,g(ξ ), (6.21b)

D0,g =
1

3Σtr,g
, (6.21c)

D2,g =
9

35Σt,g
. (6.21d)
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The sweeping strategy for this solver is considerably different than NEM/SENM in some respects. First, since a one-

node kernel does not use the node-averaged scalar flux as a constraint, this quantity is permitted to use it and does

change during the iteration sequence. The incoming boundary conditions based on the partial surface flux moments

will also change during iteration. For these reasons, multiple inner iterations are performed to resolve these before

updating the sources in the next group, and several loops over groups are also performed.

When possible, the spatial sweeping algorithm is also modified to loop over nodes axially before beginning the solve

for the next rod. As a node is solved, outgoing partial surface flux moments are also determined which can then be

used to inform the incoming boundary conditions for the nodes around it. Generally, an axial sweep both up and down

is used to resolve the boundary conditions in each inner iteration.

Before proceeding to the next section on the SN axial solver, some clarification on the nomenclature of the PN solver

will be covered. Historically, PN methods within the context of 2D/1D have been referred to as simplified PN (SPN)

[48, 49]. To remain consistent with these applications, many MPACT publications before 2017 also refer to these

methods as SPN . However, despite the historical context, referring to these as SPN has caused confusion at conferences

and other meetings. Additionally, it could be misleading since the 2D/1D approximation does not preserve the 3D SPN

approximation when using these axial solvers. To avoid further confusion, these are now being referred to as PN or

NEM-PN because NEM is used to handle the spatial representation of the flux and source.

6.6 Discrete Ordinates (SN)

Similar principles to those used to derive MOC can be applied to the characteristics-based discrete ordinates equations

to formulate axial kernels. Instead of using a Legendre expansion for the polar angle dependence as with PN , the polar

angles are discretely represented. However, there are several options in how to represent the azimuthal dependence.

The most basic option is to assume there is no dependence, in which case the equations are azimuthally integrated, as

was the case with PN . The most detailed option is to explicitly represent every azimuthal angle, but this approach is

memory-intensive. An alternative is to approximate the azimuthal dependence using a Fourier series.

6.6.1 Spatial Moments

Instead of using an NEM kernel to account for the spatial representation as was done with PN , the spatial distributions

are handled using a direct Legendre expansion. Currently, options are available to use a 0th through 3rd order expan-

sion, but it is recommended to only use the 3rd order representation. By applying similar moment balance equations to

the transport equation, the outgoing and average angular flux for the jth moment is decsribed by Stimpson [82] (Eqs.

4.3 and 4.5). Because these formulas can be fairly complex, Eqs. (6.22a) and (6.22b) are simply written in terms of
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condensed functions:

ψout = ψine−τ +
Nmom

∑
i=0

qi fout,i(h,µ,Σt), (6.22a)

ϕ j = ψin f j,in(h,µ,Σt)+
Nmom

∑
i=0

qi f j,i(h,µ,Σt), (6.22b)

where fout,i, f j,in, f j,i are the condensed functions, dependent upon the node height (h), cosine of the polar angle (µ),

and the total cross section (Σt ). τ is defined as the optical thickness of the characteristic ray segment (τ = lΣt ), where

l is the ray segment length.

To better understand what these condense functions look like, consider a problem with only a linear source. In this

case, the outgoing angular flux could be specified as:

ψout = ϕ(1) = ψine−τ +q0
1− e−τ

Σt
+q1

(
τ(1+ e−τ)+2e−τ −2

)
τΣt

, (6.23)

and the 0th and 1st moment average angular fluxes would be given by:

ϕ0 = ψin
1− e−τ

τ
+q0

(e−τ −1)+ τ

τΣt
+q1

(
2−2e−τ − τ(1+ e−τ)

)
τ2Σt

, (6.24a)

ϕ1 = ψin
6−6e−τ − τ(3e−τ +3)

τ2 +q0

3
(

2e−τ −2+ τ(1+ e−τ)
)

τ2Σt

+q1

(
12(1− e−τ)−12τe−τ −3(1+ e−τ)τ2 + τ3

)
τ3Σt

.

(6.24b)

A full description of the condensed functions up through a cubic source are available in Stimpson’s dissertation [82].

6.6.2 Azimuthal Moments

Equation (6.25) is the radially integrated transport equation with explicit azimuthal and polar dependence, which is

similar to Eq. (6.2), but considers continuous angular variables:

µ
∂ψXY

g (z,α,µ)

∂ z
+Σt,gψ

XY
g (z,α,µ) =

QXY
g (z)
4π

+T LXY
g (z,α,µ), (6.25a)

T LXY
g (z,α,µ) =−

√
1−µ2

Axy

(∫ yr

yl

cos(α)
(

ψg(xr,y,z,α,µ)−ψg(xl ,y,z,α,µ)
)

dy

+
∫ xr

xl

sin(α)
(

ψg(x,yr,z,α,µ)−ψg(x,yl ,z,α,µ)
)

dx

)
.

(6.25b)
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From this equation, the azimuthal dependence of the angular fluxes and transverse leakages are assumed to be repre-

sented by a Fourier expansion, Eq. (6.26):

ψ
XY
g (z,α,µ) =

1
2π

ψ
XY
g,0 (z,µ)+

1
π

Nmom

∑
m=1

(
ψ

XY
g,sm(z,µ)sin(mα)+ψ

XY
g,cm(z,µ)cos(mα)

)
, (6.26a)

T LXY
g (z,α,µ) =

1
2π

T LXY
g,0(z,µ)+

1
π

Nmom

∑
m=1

(
T LXY

g,sm(z,µ)sin(mα)+T LXY
g,cm(z,µ)cos(mα)

)
. (6.26b)

Substituting these into Eq. (6.25a) and integrating over α , the zeroth moment equation is obtained as Eq. (6.27a):

µ
∂

∂ z
ψ

XY
g,0 (z,µ)+Σt,gψ

XY
g,0 (z,µ) =

QXY
g (z)
2

+T LXY
g,0(z,µ). (6.27a)

Similarly, multiplying by sin(nα) or cos(nα) and integrating over α , the equations for the sine and cosine moments

are obtained respectively:

µ
∂

∂ z
ψ

XY
g,sn(z,µ)+Σt,gψ

XY
g,sn(z,µ) = T LXY

g,sn(z,µ), (6.27b)

µ
∂

∂ z
ψ

XY
g,cn(z,µ)+Σt,gψ

XY
g,cn(z,µ) = T LXY

g,cn(z,µ). (6.27c)

This derivation yields moment equations that are independent of one another. This differs from the PN formulation, in

which each moment is dependent on the neighboring moments. However, in the PN formulation, an expansion of µ is

assumed, and when substituting into the axial streaming term, which also has a factor of µ , the subsequent integration

produces coupled equations. Because the Fourier expansion only depends on the azimuthal angle (α), the additional

µ has no impact on the integration.

Additionally, the radial MOC sweeper tallies the transverse leakage coefficients – T LXY
g,0(z,µ), T LXY

g,sn(z,µ), and

T LXY
g,cn(z,µ) – using the following equations:

T LXY
g,0(z,µ) =

Nazi

∑
l=1

wlT LXY
g,m(z,αm,µ), (6.28a)

T LXY
g,sn(z,µ) =

Nazi

∑
l=1

sin(nαm)wlT LXY
g,m(z,αm,µ), (6.28b)

T LXY
g,cn(z,µ) =

Nazi

∑
l=1

cos(nαm)wlT LXY
g,m(z,αm,µ), (6.28c)

where wl is the angle weight in the quadrature set.

The sweeping algorithm for SN is very similar to that of PN /SN , where wavefront axial sweeping is employed to

propogate the boundary conditions of each node effectively, and multiple inner iterations are necessary to converge

the boundary conditions.
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6.7 Transverse Leakage Interpolation

In the 2D/1D equations, the angular fluxes and currents that come from the radial sweeper have no intranodal axial

dependence. However, since all of the axial sweepers use some form of Legendre expansion of the spatial moments,

they can incorporate higher order transverse leakage components into the source construction using the transverse

leakages from the neighboring planes. To accomplish this, higher order coefficients can be constructed to describe the

shape of the transverse leakage in each axial node, as illustrated in Figure 6.3.

Figure 6.3. Tranverse leakage interpolation.

Eqs. (6.29) show the coefficients for a quadratic interpolation of the transverse leakage using the values from the top

and bottom neighboring planes:

T LXY
g,m(ξ ) =

2

∑
i=0

T LXY
g,l,iPi(ξ ), (6.29a)

G = 2(hC +hB)(hC +hT )(hB +hC +hT ), (6.29b)

T LXY
g,l,0 = T LXY

C,g,l , (6.29c)

T LXY
g,l,1 = G−1hc[(T LXY

T,g,l−T LXY
C,g,l)(hC +2hB)(hC +hB)

− (T LXY
B,g,l−T LXY

C,g,l)(hC +2hT )(hC +hT )
]
,

(6.29d)
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T LXY
g,l,2 = G−1(hC)

2[(T LXY
T,g,l−T LXY

C,g,l)(hC +hB)

+(T LXY
B,g,l−T LXY

C,g,l)(hC +hT )
]
.

(6.29e)

It is feasible to use cubic or even quartic expansions, but this would require data from farther neighboring planes and

potentially more data passing between processors.

It has been shown that the quadratic interpolation can introduce larger errors in cases with more severe axial profiles

[10], particularly when using a refined axial mesh. It is likely that higher order expansions would alleviate these errors,

but the results from that work suggest that using a flat interpolation is more physical and that a linear fit would also

show improvement. However, there are some differences in the quadratic interpolation schemes between that work

and what is shown here which can likely avoid these issues.
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7. Coarse Mesh Finite Difference Accelera-

tion

An important aspect of efficiently solving the transport equation is the use of an effective technique to accelerate the

iterative convergence of a sweep-based method. The goal is to minimize the amount of computational work needed

to reach convergence. This is usually achieved by minimizing the number of transport sweeps required to converge.

Typically, a good acceleration scheme has the following properties:

• it does not change the solution from that of the un-accelerated (sweep-based) iteration scheme,

• it converges rapidly as compared to the un-accelerated iteration scheme,

• the cost per iteration is not significantly higher than the cost per iteration of the unaccelerated scheme, and

• it is not dependent on a particular discretization or mesh.

One acceleration method that exhibits these qualities is the coarse mesh finite difference (CMFD) method, originally

developed to accelerate the convergence of nodal diffusion problems in reactor analysis [78]. The fundamental concept

of CMFD applies also to the transport equation and has been shown to be effective at accelerating the convergence

of 2D MOC transport problems. In general, CMFD can be understood as a nonlinear coarse mesh diffusion synthetic

acceleration (DSA) scheme. [61]

The conventional CMFD method is described in Section 7.1. In Section 7.2, an extension of the CMFD method for

spatially decomposed problems is presented. Sections 7.3 and 7.4 address artificially diffusive and optimized CMFD,

which are optimized using a Fourier analysis. Section 7.5 discusses the performance of CMFD for 3D problems using

2D/1D and 3D MOC. In Section 7.8, CMFD is discussed using red-black successive over-relaxation. Section 7.6

describes subplane CMFD, and Section 7.7 presents the convergence criteria used in MPACT to determine when to

discontinue performing power iterations.
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7.1 Conventional CMFD

The lower order equation used in the CMFD acceleration scheme is based on the following multigroup diffusion

equation:

−∇∇∇ · (Dg(x)∇∇∇φg(x))+Σt,g(x)φg(x) =

[
G

∑
g′=1

(
Σs0,g′→g(x)+

χg

keff
νΣ f ,g′(x)

)
φg′(x)

]
. (7.1)

This equation can be obtained by applying Fick’s Law to the neutron balance equation that results from integrating

the neutron transport equation over angle. In this process, the neutron balance equation is exact with respect to the

transport equation; it is the introduction of Fick’s Law that makes Eq. (7.1) an approximation.

The discretized neutron balance equation on cell j is given by

∑
s

Jnet
j,g,sA j,s +Σt, j,gφ j,gVj =

[
G

∑
g′=1

(
Σs0, j,g′→g +

χg

keff
νΣ f , j,g′

)
φ j,g′

]
Vj, (7.2)

where the subscript j is a spatial cell index, and s denotes a surface of spatial cell j. A j,s is the area of surface s of the

cell j, and Vj is the cell volume. All of the above quantities with subscript j are averaged over the volume of cell j

except for Jnet
j,g,s, which is an area-averaged quantity over surface s of cell j.

CMFD also introduces the coarse mesh concept on which the diffusion equation is solved. This requires development

of restriction and prolongation transfer operators for the solution between the fine mesh defined by the MOC flat source

regions, and the CMFD coarse mesh. The restriction (homogenization) operator collapses the fine mesh solution onto

the coarse mesh and is shown below:

Σx, j,g =
∑i∈ j Σx,i,gφi,gVi

∑i∈ j φi,gVi
, (7.3a)

φ j,g =
∑i∈ j φi,gVi

∑i∈ j Vi
, (7.3b)

χ j,g =
∑i∈ j χi,g[∑

G
g′=1 νΣ f ,i,g′φi,g′ ]Vi

∑i∈ j[∑
G
g′=1 νΣ f ,i,g′φi,g′ ]Vi

. (7.3c)

In classic diffusion theory, the net current is approximated by Fick’s Law with a finite-difference spatial discretization.

This is shown in Eqs. (7.4), where h j,s is the distance between cell j and its neighboring cell on surface s:

Jnet,diff
j,g,s =−D̃ j,g,s (φ j,g−φ j,g,s) , (7.4a)

D̃ j,g,s =
2D j,gD js,g

h j,s (D j,g +D js,g)
. (7.4b)

Here the subscript js is the index of the cell bordering cell j via surface s. The diffusion coefficient of cell j is defined

via the transport-corrected cross section as follows:

D j,g =
1

3Σtr, j,g
. (7.5)

Σtr is defined in Section 5.3.3.
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CMFD introduces a correction coefficient, D̂ j,g,s, so the expression for the net current is given by:

Jnet
j,g,s =−D̃ j,g,s (φ j,g−φ j,g,s)+ D̂ j,g,s (φ j,g +φ j,g,s) . (7.6)

The correction factor, D̂ j,g,s, introduced in Eq. (7.6), is defined by Eq. (7.7), where the fine mesh transport method

determines the neutron net current on the surfaces of the coarse mesh:

D̂ j,g,s =
Jnet

j,g,s + D̃ j,g,s (φ j,g−φ j,g,s)

(φ j,g +φ j,g,s)
. (7.7)

This correction factor, along with cross section homogenization, creates equivalence between the solution of the fine

mesh MOC equations and the coarse mesh diffusion equations at convergence. The homogenization process preserves

all the cell-volume integrated reaction rates based on the fine mesh solution. The correction factor of Eqs. (7.6) and

(7.7) allows the low order system to also preserve the cell-surface integrated quantities of the fine mesh solution, and

specifically the average leakage. Because of this equivalence, the multiplication factor keff of the CMFD linear system

is the same as that of the fine mesh transport method computed from source iteration upon convergence.

The iterative solution algorithm with CMFD is described in Algorithm 7.1, in which the superscript l denotes the

iteration index. Because the CMFD problem is an eigenvalue problem, the prolongation equation for the scalar flux

Algorithm 7.1: Iterative algorithm for the MOC solution of steady-state eigenvalue problem
1: while not converged do

2: Compute cell-averaged values for CMFD coefficients from Eqs. (7.3) and (7.6):{
φ
(l+ 1

2 )
j,g ,Σx, j,g,χ j,g, D̃ j,g,s, D̂ j,g,s

}
← fhom

(
φ
(l+ 1

2 )
i,g ,Σx,i,g,χi,g

)
3: Solve CMFD eigenvalue problem given by Eqs. (7.2) for cell-averaged scalar flux and keff:

φ
(l+1)
j,g ← fCMFD

(
φ
(l+ 1

2 )
j,g ,Σx, j,g,χ j,g, D̃ j,g,s, D̂ j,g,s

)
4: Update fine mesh solution given by Eq. (7.8) and (7.9):

φ
(l+1)
g ← fpro

(
φ
(l+1)
g ,φ

(l+ 1
2 )

g

)
5: Perform transport sweep:{

φ
(l+ 1

2 )
g ,ϕ

in,(l+ 1
2 )

g

}
← ftransport

(
ϕ

in,(l)
g ,φ

(l)
g

)
6: Update fine-mesh fission source

7: Check if solution is converged

8: end while

takes a nonlinear form given by:

φ
(l+1)
i,g = φ

(l+ 1
2 )

i,g

φ
(l+1)
j,g

φ
(l+ 1

2 )
j,g

, i ∈ j. (7.8)
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7.2 Spatial Domain Decomposed CMFD

When considering numerical methods for solving the spatially decomposed transport equation, algorithms that pre-

serve the iteration of a serial sweep such as the popular KBA algorithm [58, 4, 3, 5] have limited scalability. However,

another way to perform the parallel sweep with better scalability is to take a Jacobi-type approach and allow each

subdomain to sweep independently. The downside of this is that the angular flux boundary condition for interior

sub-domains becomes lagged, thus reducing the rate of convergence for an un-accelerated source iteration scheme. If

a 1-group problem is considered in a semi-infinite 1D purely absorbing medium with a fixed boundary source, then

the problem will converge in a single transport sweep in serial. However, if this problem is divided spatially into

nspace domains, it would take n−1 sweeps for the nth sub-domain to receive the correct boundary condition from its

neighbor.

In conventional CMFD, the prolongation operator only applies to the cell-averaged scalar flux. SDD-CMFD extends

the prolongation operator to also provide an update to the angular flux boundary condition on the decomposed spatial

subdomains. This update equation can take a number of forms, so it is written as:

ϕ
in,(l+1)
i,g,m,k = ϕ

in,(l)
i,g,m,k f (l+1)

j,g,s , k ∈ s, i ∈ j. (7.9)

In MPACT, the form of f is taken to be:

f (l+1)
j,g,s =

φ
S,(l+1)
j,g,s

φ
S,(l+ 1

2 )
j,g,s

. (7.10)

Here, φ S
j,g,s is the surface-averaged scalar flux for surface s. Previous work [83] compared several definitions of f

and showed that Eq. (7.10) provides reasonable additional speed-up and guarantees positivity of the update factor. To

obtain the coarse mesh surface fluxes required by Eq. (7.10), additional radial coupling coefficients must be introduced

that reconstruct the transport surface flux from the coarse mesh cell-averaged flux. These are given below and can be

derived in a similar way as the current coupling coefficients:

φ
S
j,g,s = s̃ j,g,sφ j,g− (1− s̃ j,g,s)φ j,g,s + ŝ j,g,s (φ j,g +φ j,g,s) , (7.11a)

s̃ j,g,s =
1

1+h j,s
Σtr, j,g

Σtr, j,g,s

, (7.11b)

ŝ j,g,s =
φ

S,MOC
j,g,s − s̃ j,g,sφ j,g +(1− s̃ j,g,s)φ j,g,s

(φ j,g +φ j,g,s)
. (7.11c)

Here, Σtr is the transport-corrected total cross section defined in Section 5.3.3. It is expected that SDD-CMFD will have

similar performance as conventional CMFD, although the importance of the boundary angular flux update component

of the prolongation operator increases as the optical thickness of the spatial subdomain decreases. In practice, the

convergence penalty for lagging the sub-domain interface angular fluxes for a Jacobi-type parallel sweep is largely

eliminated by SDD-CMFD acceleration.
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7.3 Artificially Diffusive CMFD

The CMFD acceleration method is known to become unstable when the maximum coarse-cell optical thickness be-

comes larger than a few mean-free-paths (mfp) thick. The spectral radius predicted by Fourier analysis of a CMFD-

accelerated k-eigenvalue 1D SN sweep using a step characteristic spatial discretization is depicted in Fig. 7.1. (The

spectral radius ρ is the asymptotic error-reduction per iteration. If ρ � 1, then the method is rapidly convergent, if

ρ < 1, then the method is convergent, and if ρ ≥ 1, then the method is divergent. Also, 1D SN is a good proxy for 2D

and 3D MOC; the Fourier analysis of the 2D step characteristic method yields results similar to those for 1D.)

In Fig. 7.1, the convergence rate of CMFD (spectral radius) rapidly degrades as the optical thickness of a spatial cell

increases from 0.5 to 2.0 mfp. Above 2.0 mfp, standard CMFD is unstable. The spectral radius for the CMFD variant

equivalent to partial-current CMFD (pCMFD) is shown in red. The pCMFD-like variant is unconditionally stable.

This method consists of adding a constant factor of 1
4 to the standard CMFD diffusion coefficient D̃:

D̃g,s =
2

3
(
Σtr,g,s−hs− +Σtr,g,s+hs+

) + 1
4
, (7.12)

where s is the surface index, and the subscripts s− and s+ denote the cells on the negative and positive side of the

surface, respectively. When the optical thickness is very small, D̃s >> 1, and the factor of 1
4 has little effect on the

overall iteration. When the optical thickness is moderate, between 0.3–1.0 mfp, this factor degrades the convergence

rate of the iteration because the lagged D̂ terms are relatively large, due to a poor diffusion coefficient, thus requiring

more iterations to converge. However, when the optical thickness is greater than 1 mfp, this scheme will not become

Figure 7.1. Fourier analysis convergence behavior of CMFD-accelerated transport method for CMFD variants (1D

IHM SN , 1 transport sweep per CMFD update, 3 fine cells per coarse cell).
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unstable like standard CMFD. The scheme has the effect of damping the flux updates, which prevents oscillatory

growth in the error modes that causes divergence. As the optical thickness becomes very large, the diffusion coef-

ficients become a uniform 1
4 across the problem, and the CMFD-accelerated scheme converges at a rate similar to a

source iteration scheme. Overall, the pCMFD-like scheme is favorable because of its guaranteed stability. However,

CMFD can converge slightly faster than pCMFD when the spatial cells are moderately thick and stability is not an

issue.

The artificially diffusive CMFD (adCMFD) method, shown in green in Fig. 7.1, effectively combines the best of

CMFD and pCMFD convergence properties to produce a stable iteration scheme that converges as fast or faster than

standard CMFD [99]. This is done by adding a variable amount to the diffusion coefficient on a surface, based on the

optical thickness of its neighboring cells:

D̃g,s =
2

3(Σtr,g,s−hs−+Σtr,g,s+hs+)
+θg,s. (7.13)

The variable θ in Eq. (7.13) will be no greater than 1
4 , and in practice it will always be positive. In Fig. 7.1, it is

allowed to be negative, which is why the green line is lower than the blue line for small optical thicknesses. Equation

(7.13) demonstrates the relationship between adCMFD and pCMFD. The actual implementation of adCMFD is slightly

different:

D̃g,s =
2

3
(

Σtr,g,s−hs−
1+3θg,s−

+
Σtr,g,s+hs+
1+3θg,s+

) , (7.14)

where the optimum θ is a piecewise function of the optical thickness, with upper and lower bounds and a 6th order

polynomial between the limits:

θg =


0 , Σtr,gh < 1 ,

∑
6
k=0 ak (Σtr,gh)k+1 , 1≤ Σtr,gh≤ 14 ,

0.254Σtr,gh , Σtr,gh > 14.

(7.15)

The coefficients ak are defined by a fit to the optimal θ calculated experimentally by Fourier analysis. Negative values

of θ are not allowed because they could give a negative diffusion coefficient D̃g,s, which would likely cause a stability

issue.

7.4 Optimal CMFD

In Fig. 7.1, the final curve (purple) shows the spectral radius of optimal CMFD. All of the CMFD variants that modify

the diffusion coefficient can be expressed in terms of a shaped or prolonged CMFD flux update. For example, a flux

update factor Λ for a given coarse cell can be defined as:

Λ j,g =
φ

l+1
j,g

φ
l+ 1

2
j,g

. (7.16)
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This can be applied to each fine cell i in coarse cell j, or the update can be given a fine mesh shape f , so that

Λi,g = fiΛ j,g, i ∈ j, (7.17a)

1
Vj

∑
i∈ j

fi,gVi = 1. (7.17b)

The curve in Fig. 7.1 was generated by running many different cases while varying f for a 1D SN problem, with 3

uniform fine cells per coarse cell, to find the optimal f . This gives a good indication of the theoretical limit of the

convergence rate of the CMFD method. Without fundamentally restructuring the method, a faster convergence rate

likely cannot be achieved. Fortunately, the adCMFD method is very close to the apparent limit, and the adCMFD θ is

inexpensive to calculate.

The shape of the optimal curve in Fig. 7.1 shows that it is not possible to optimize CMFD to greatly improve the

convergence rate over adCMFD for optically thick cells. The only way to improve the convergence rate is to reduce

the optical thickness of the coarse cells, which moves the thicknesses toward the left on the plot, thus down the slope

of the curve to a lower spectral radius.

7.5 3D MOC CMFD Acceleration

CMFD becomes unstable when accelerating transport methods, but not diffusion-type methods (the 1D PN kernels).

Thus, only the optical thickness of the coarse cells in the x and y dimensions will cause CMFD to be unstable or

adCMFD to converge slowly, if using a 1D PN kernel. When using 2D/1D, the axial height of the MOC planes can

become arbitrarily large without affecting CMFD convergence properties.

3D MOC introduces an extra complication to the CMFD convergence properties. Because 3D MOC is a transport

method in all three spatial dimensions, the optical thickness in the axial direction also matters. The convergence rate

of adCMFD will become very slow as the optical thicknesses of the coarse cells become large (several mfp). When

using 2D/1D, the axial heights are often larger than the pin pitch. Thus, if the coarse mesh for 3D MOC is defined

with the same axial heights typically used for 2D/1D, the iterations may converge very slowly due to large axial

optical thickness. While the size of the coarse mesh in the radial dimension is usually fixed to conform to the periodic

Cartesian geometry of an LWR, the axial coarse mesh can be varied more easily. The coarse mesh used for 3D MOC

should have similar sizes in each dimension (roughly cubic) to avoid excessive degradation of the convergence rate.

2D/1D with a 1D SN axial solver can also have CMFD-related stability problems. However, by default the 1D SN

axial solver has five inner sweeps, as well as five up-scatter iterations. Using this many transport sweeps will probably

mitigate any CMFD instability unless the optical thickness is extremely large. There are still stability issues related to

transverse leakage source positivity, but these are not directly related to classic CMFD instability.
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7.6 Subplane CMFD

Using conventional CMFD, each pin cell is homogenized using the quantities defined in Eq. (7.3) in every slice in the

model. The radial coupling coefficients defined in Eq. (7.7) are obtained by calculating the current at the interface

between each pair of pin cells using the transport sweeper, while the axial coupling coefficients are obtained from the

axial currents calculated by the axial solve during the previous iteration.

To ensure stability and minimize runtime of the 2D/1D method, it is desirable to use a small number of thick MOC

planes. However, to achieve sufficient accuracy, this axial mesh must sometimes be refined. To do this while avoid-

ing stability issues or significantly increasing the computational burden of the calculations, researchers at the Korea

Atomic Energy Research Institute developed the subplane scheme [14, 74]. While preparing the CMFD and axial

calculations, this scheme divides the MOC planes into multiple subplanes. This axially refines the CMFD and 1D

transport meshes to allow them to capture intra-plane detail without increasing the number MOC planes required.

This efficiently produces a more accurate 2D/1D solution without the expense or stability concerns normally associ-

ated with 2D/1D mesh refinement. This section explains the modifications to the 2D/1D calculations required for the

subplane scheme.

7.6.1 Homogenization

For the traditional CMFD calculations, each pin cell is homogenized into a single CMFD cell. When using the

subplane scheme, the homogenized pin cell is divided axially into a stack of cells. This causes the CMFD system to

have more cells in the axial direction than the transport mesh, allowing CMFD to capture subplane axial flux shapes

that would otherwise be ignored. To do this, a subplane scaling factor is introduced that provides an axial shape within

a 2D plane:

c(l)g,i =
φ
(l−1)
g,i

φ
(l−1)
g,i

=
φ
(l−1)
g,i ∑

Nsp
i′=1 Vi′

∑
Nsp
i′=1 φ

(l−1)
g,i′ Vi′

, (7.18)

where superscripts indicate from which iteration the values are taken, and Nsp is the number of subplanes for the pin

cell of interest. When the homogenized values are calculated from the 2D transport solution using Eq. (7.3), the fine

mesh flux is multiplied by this subplane scaling factor everywhere it appears. It is assumed that materials are constant

axially within each pin cell, so this subplane factor has no impact on the homogenized cross sections. However, the

homogenized flux φg,i and fission source distribution χg,i are changed, providing an axial shape for the source term in

the eigenvalue calculation.
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7.6.2 Coupling Coefficients

In addition to the homogenized cell terms, the coupling coefficients described by Eqs. (7.4) and (7.7) must be calculated

for each subplane. To maintain consistency, the area-averaged current calculated by the transport sweep must be

preserved across the sub-surfaces used by the subplane scheme. Thus, the current calculated by the transport sweep

at an interface is used at the corresponding interfaces for all subplanes in that plane. To maintain consistency, the

cell-homogenized flux used in the calculation of the diffusion coefficients must be defined for the entire MOC plane

as in Eq. (7.3) rather than using the subplane scaling factor for each subplane.

The axial coupling coefficient can be treated in a more straightforward manner. Because the 1D axial solvers use the

same pin-homogenized mesh as the CMFD solver, axial currents are naturally calculated at the top and bottom of each

subplane. Thus, these currents can be used together with the subplane fluxes to calculate subplane-dependent axial

coupling coefficients.

7.6.3 Projection

The projection of the CMFD flux back to the 2D planes must also account for the presence of the subplanes. To do

this, the solution is volume-averaged over all subplanes for each pin cell, resulting in an equation similar to (7.8):

φ
(k)
trans,g, j =

∑
Nsp
i′=1 φ

(k)
CMFD,g,i′V

′
i

∑
Nsp
i′=1 φ

(k−1)
CMFD,g,i′V

′
i

φ
(k−1)
trans,g, j. (7.19)

The surface fluxes can also be homogenized axially in the same way to scale the angular flux boundary conditions

using Eq. (7.9).

7.7 Solving the CMFD Eigenvalue Problem

7.7.1 Power Iteration

Algorithm 7.1 describes the overall iteration scheme in MPACT, in which CMFD is used to accelerate the transport

sweeper. However, the details of solving the CMFD eigenvalue problem were omitted in this algorithm. This section

describes the power iteration procedure (with Wielandt shift) for solving the CMFD eigenvalue problem.
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Without a Wielandt shift, a single power iteration on Eq. (7.1) can be described as follows:

[−∇∇∇ ·Dg(x)∇∇∇+Σt,g(x)]φ
(l+1)
g (x)−

G

∑
g′=1

Σs0,g′→g(x)φ
(l+1)
g′ (x) =

χg

k(l)eff

F(l)(x), (7.20a)

F(l+1)(x) =
G

∑
g′=1

νΣ f ,g′(x)φ
(l+1)
g′ (x), (7.20b)

k(l+1)
eff = k(l)eff

∫
F(l+1)(x)F(l+1)(x)d3x∫
F(l+1)(x)F(l)(x)d3x

. (7.20c)

The domain of integration for the integrals in Eq. (7.20c) is the entire spatial domain of the problem. The details

of CMFD spatial discretization and the correction factors (D̂) have been omitted for simplicity. These details do not

affect the content in this subsection and can be found in the previous sections of this chapter.

In matrix notation, Eqs. (7.20) can be rewritten as follows:

Mφ
(l+1) =

1

k(l)eff

Fφ
(l), (7.21a)

k(l+1)
eff = k(l)eff

〈
Fφ

(l+1),Fφ
(l+1)

〉
〈

Fφ
(l+1),Fφ

(l)
〉 . (7.21b)

In the formulation above, the power iteration scheme always converges to the largest eigenvalue keff. Fortunately, this

corresponds to the only physical mode of the system (i.e., the one with a nonnegative scalar flux).

7.7.2 Wielandt Shift

7.7.2.1 Traditional Wielandt Shifts

The spectral radius of power iteration is given by the dominance ratio of the system, which is the ratio of the second

largest (in magnitude) eigenvalue to the largest eigenvalue. For many problems of interest, power iteration alone can

be prohibitively slow, requiring O(100) or more iterations.

Thus, the power iteration scheme should be accelerated, and one common technique for doing so is the Wielandt

shift [90]. The goal of the Wielandt shift is to “shift” the eigenvalue spectrum by ks, an estimate of the true keff, so that

the dominance ratio is reduced. With a Wielandt shift applied, the power iteration scheme in Eqs. (7.20) is modified
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as follows:

[
−∇∇∇ ·Dg(x)∇∇∇+Σt,g(x)

]
φ
(l+1)
g (x)−

G

∑
g′=1

[
Σs0,g′→g(x)+

χg(x)

k(l)s

νΣ f ,g′(x)

]
φ
(l+1)
g′ (x)

=

[
1

k(l)eff

− 1

k(l)s

]
χgF(l)(x), (7.22a)

F(l+1)(x) =
G

∑
g′=1

νΣ f ,g′(x)φ
(l+1)
g′ (x), (7.22b)

k(l+1)
eff =

[(
1

k(l)eff

− 1

k(l)s

) ∫
F(l+1)(x)F(l)(x)d3x∫

F(l+1)(x)F(l+1)(x)d3x
+

1

k(l)s

]−1

. (7.22c)

When using a Wielandt shift, care must be taken to avoid over-shifting. In particular, ks must be chosen to be strictly

larger than the true keff. If ks ≤ keff, two problems are encountered: the fission source becomes negative (or identi-

cally zero), and it is possible for the method to converge to the incorrect eigenmode (one with negative scalar flux

components).

This leads to an important question: how should ks be chosen? Ideally, ks should be slightly larger than keff, but keff is

generally not known until the problem has already been solved. In many diffusion codes such as the Purdue Advanced

Reactor Core Simulator (PARCS) code [22], an iteration-dependent or adaptive Wielandt shift is employed, defined

as:
1

k(l)s,PARCS

≡max

{
1

k(l)eff

− c1

∣∣∣∣∣ 1

k(l)eff

− 1

k(l−1)
eff

∣∣∣∣∣− c0,
1

kmax

}
. (7.23)

Here c1 and c0 are user-specified constants, and kmax is a user-specified upper bound for k(l)eff that is usually determined

by the physics of the problem. The term with c1 is a measure of how converged k(l)eff is, while c0 > 0 ensures that a shift

of exactly keff is never made, since doing so would yield a singular system in Eq. (7.20a). Some typical values for c1,

c0, and kmax are 10, 0.01 or 0.02, and 3. The notation simplifies if λ = 1
keff

is used instead of keff, but keff is chosen to

maintain consistency with the rest of this theory manual. The PARCS Wielandt shift is based on the idea that k(l)eff is a

reasonable estimate of keff. It can provide an order of magnitude reduction in the number of power iterations compared

to power iteration with a constant Wielandt shift.

7.7.2.2 Space-Dependent Wielandt Shift

The PARCS Wielandt shift is effective compared to constant Wielandt shifts, but there are situations (i.e., at the

beginning of the power iteration scheme) in which k(l)eff is not well converged and/or deviates significantly from keff.

In these situations, an improved Wielandt shift may be desired. This motivates the development of a space-dependent

Wielandt shift (SDWS). As suggested by its name, SDWS can be formulated by adding space-dependence to the shift
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ks. Eqs. (7.22) are modified as follows:

[−∇∇∇ ·Dg(x)∇∇∇+Σt,g(x)]φ
(l+1)
g (x)−

G

∑
g′=1

[
Σs0,g′→g(x)+

1

k(l)s (x)
νΣ f ,g′(x)

]
φ
(l+1)
g′ (x)

=

[
1

k(l)eff

− 1

k(l)s (x)

]
χgF(l)(x), (7.24a)

F(l+1)(x) =
G

∑
g′=1

νΣ f ,g′(x)φ
(l+1)
g′ (x), (7.24b)

k(l+1)
eff =

∫
F(l+1)(x)F(l+1)(x)d3x∫

F(l+1)(x)
[(

1
k(l)eff

− 1
k(l)s (x)

)
F(l)(x)+ 1

k(l)s (x)
F(l+1)(x)

]
d3x

. (7.24c)

This reduces to Eqs. (7.22) when k(l)s (x) is constant.

Three SDWS variants are described: SDWS-LE (Local Eigenvalue), SDWS-LEPS (LE Positive Source), and SDWS-

ILEPS (Improved LEPS). Each of these variants is an improvement over the previous variant, and SDWS-ILEPS is

the option currently available in MPACT. The three shifts are defined as follows:

k(l)s,LE(x)≡ k∞(x), (7.25)

k(l)s,LEPS(x)≡max{k(l)s,LE(x),k
(l)
eff}, (7.26)

k(l)s,ILEPS(x)≡min{k(l)s,LEPS(x),k
(l)
s,PARCS}. (7.27)

At each point x (or in each spatial cell), k∞(x) is the local infinite-medium eigenvalue, defined as the solution of the

following local G×G problem:

Σt,g(x)φ0,g(x)−
G

∑
g′=1

Σs0,g′→g(x)φ0,g′(x) =
χg

k∞(x)

G

∑
g′=1

νΣ f ,g′(x)φ0,g′(x). (7.28)

In matrix notation, this can be expressed as

[
Σt(x)−Σs0(x)

]
φ0(x) =

1
k∞(x)

χ
[
νΣ f (x)

]T
φ

0
(x). (7.29)

Because this system only has one nonzero eigenvalue (the matrix χ
[
νΣ f

]T has a rank of 1), k∞(x) can be computed

without iteration as follows:

k∞(x) =
[
νΣ f (x)

]T [
Σt(x)−Σs0(x)

]−1
χ. (7.30)

The LE shift provides a physically motivated shift whose performance may be better than that of traditional Wielandt

shifts such as the PARCS shift. For a homogeneous system with reflective or periodic boundary conditions, the LE

shift yields the exact eigenvalue, and the method converges in 1 iteration (if a singular system is solved). For general

heterogeneous problems, numerical experiments have shown convergence in O(10) iterations.

However, the LE shift can over-shift the CMFD system, producing a negative fission source in Eq. (7.24a) and causing

the method to either diverge or converge to an unphysical solution. The LEPS method was developed to remedy this
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issue. The LEPS method, presented in Eq. (7.26), bounds the value of ks(x) so that the fission source can never have

negative components.

The ILEPS shift is a simple improvement of the LEPS shift that leverages the benefits of the PARCS shift. While the

LEPS shift generally outperforms the PARCS shift at the beginning of the iteration scheme (when the eigenvalue is

not well converged), the PARCS shift generally outperforms SDWS-LEPS at the end of the iteration scheme (when

the eigenvalue is relatively converged). SDWS-ILEPS, presented in Eq. (7.27), combines the two shifts, yielding a

shift that always uses the more aggressive of the two shifts.

As a result, the number of power iterations required with SDWS-ILEPS is always less than or equal to the number

of power iterations required for SDWS-LEPS or the PARCS shifts alone. However, the improvement provided by

SDWS-ILEPS over SDWS-LEPS or the PARCS shift is problem-dependent.

More information on the shifts can be found in an article by Yee et al. [95].

7.7.2.3 Impact on Linear Solvers

The use of a Wielandt shift (space-dependent or not) can significantly reduce the number of power iterations required,

but the left side of the shifted CMFD system can be significantly more ill-conditioned (closer to singular) than the

unshifted CMFD system. Therefore, an iterative linear method may require many more iterations to solve Eq. (7.24a).

This presents a trade-off that must be carefully considered. On the one hand, an effective Wielandt shift reduces the

number of power iterations required. On the other hand, if the linear solver struggles, then each power iteration can

require significantly more time, offsetting the benefit of reducing the number of power iterations. When choosing

a linear solver for CMFD power iterations, it is important that the linear solver (and/or preconditioner) is relatively

insensitive to the ill-conditioning caused by the Wielandt shift. Often, power iteration does not converge when a

Wielandt shift is used unless the maximum number of permitted linear solver iterations is increased.

7.7.3 Convergence Criterion for CMFD Power Iterations

This section describes the logic for determining when to stop performing power iterations on the CMFD system and

return to the transport sweeper. MPACT exits the CMFD solver if one of two criteria are met: (1) the number of power

iterations reaches the maximum allowed (currently, this maximum is set to 20), or (2) the normalized residual has

been reduced by a specified factor (currently, this factor is 100) and keff is not changing by more than some specified

tolerance (currently, this tolerance is 10−6).

If the CMFD system is expressed in matrix-vector notation as

Mφ =
1

keff
Fφ , (7.31)
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then the second condition can be expressed as follows:

||r(l)||
||r(0)||

≡

∣∣∣∣∣∣∣∣Mφ
(l)− 1

k(l)eff

Fφ
(l)
∣∣∣∣∣∣∣∣/ ∣∣∣∣∣∣φ (l)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣Mφ
(0)− 1

k(0)eff

Fφ
(0)
∣∣∣∣∣∣∣∣/ ∣∣∣∣∣∣φ (0)

∣∣∣∣∣∣ < 100, (7.32)

∣∣∣k(l)eff− k(l−1)
eff

∣∣∣< 10−6. (7.33)

7.8 Red-Black Successive Over-Relaxation CMFD

7.8.1 Red-Black Gauss-Seidel

The linear systems in CMFD can be solved by a variety of techniques. A PETSc-based [6] GMRES solver has been

used as the default in MPACT for several years. One recent suggestion was to pursue a more basic iterative solver

which may be more efficient. One of the most basic of such solvers is the Gauss-Seidel scheme, which loops over the

coarse mesh cells, solving for the flux in each cell using the most up-to-date neighboring cell data available.

Several different techniques exist for determining the order in which the solution is obtained; one popular approach is

the red-black scheme [20], which tags each coarse cell as red or black to produce a checkerboard pattern, as in Fig.

7.2. This shows the layout for a small 2 × 2 core of assemblies with 3 × 3 pins each. Gray boundaries show the

assembly edges.

The indexing of the spatial cells within each assembly is natural or lexicographic, but it should be noted that globally,

the indexing is not natural. This is because the assembly indexing is not typically lexicographic and is usually based

on a z-tree partitioning scheme. Figure 7.3 is a flow chart of the solver’s iteration strategy, which involves looping

over and solving the fluxes for the red indices, passing data as necessary, looping over the black indices, and again

passing data as necessary. Because the inner iteration convergence for Gauss-Seidel solvers tends to be slower than that

for many other iterative solvers, each CMFD eigenvalue update iteration is restricted to performing a user-specified

maximum number of iterations. A maximum of 50–100 inner iterations seems sufficient for 2D cases, but 3D cases

with feedback perform best with 100–150 iterations. Otherwise, the differences in the total number of outer iterations

are noticeable. To increase the applicability of the solver, both message passing interface (MPI) and open multi-

processing (OpenMP) are currently available to provide spatial parallelization. One advantage of this is that PETSc is

restricted to using MPI [6], although a hybrid MPI/OpenMP approach is being considered by the PETSc development

team.
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Figure 7.2. Red-black indexing.

7.8.2 Successive Over-Relaxation (SOR)

Gauss-Seidel is a special case of the successive over-relaxation (SOR) solver, in which the relaxation factor equals

unity. SOR typically applies a relaxation factor larger than unity to accelerate the convergence of the system [20, 89]:

φ
(l)
n,g = ω

(l−1)
R/B φ

(l− 1
2 )

n,g +(1−ω
(l−1)
R/B )φ

(l−1)
n,g , (7.34)

where l denotes the iteration index, n denotes the cell index, and g denotes the group index. ω is the relaxation factor,

which changes each iteration, and is different for red (R) and black (B) cells. The determination of optimal relaxation

factors has been studied extensively. The following implementation uses adaptive relaxation factors based on the cyclic

Chebyshev semi-iterative (CCSI) method [89, 39], in which the red and black fluxes use different relaxation factors,

Eqs. (7.35) and (7.36), that eventually converge to the same value. Equation (7.35) shows the initial relaxation factors,

and Eq. (7.36) shows the relaxation factor for subsequent iterations:

ω
(0)
R = 1, (7.35a)

ω
(0)
B =

1
1− 1

2 ρ2
J
, (7.35b)

ω
(l+1)
R =

1

1− 1
4 ρ2

J ω
(l)
B

, l ≥ 1, (7.36a)
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Figure 7.3. Red-black SOR CMFD iteration strategy.

ω
(l+1)
B =

1

1− 1
4 ρ2

J ω
(l+1)
R

, l ≥ 1. (7.36b)

These equations make use of the Jacobi spectral radius, which in this work is estimated during the first 10 inner

iterations without relaxation. The pseudoerror (two-norm of the multigroup flux difference) is used to approximate the

Gauss-Seidel spectral radius and is then converted to the Jacobi spectral radius (ρGS = ρ2
J ). It is worth noting that these

relaxation factors only seem to be valid when rotational symmetry is not applied to any boundaries. With rotational

symmetry, some red-red and black-black neighbors will occur along those boundaries. These will likely invalidate the

underlying theory of the derivation. The results presented in this work exclusively consider mirror symmetry, although

roughly similar time reductions are observed with rotational symmetry where the relaxation is disabled.
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With the RBSOR solver and appropriate limitations on the number of inner iterations performed each outer iteration,

a roughly 2× reduction in CMFD solve time is observed, with roughly 40% reduction overall.

7.9 Summary

In this chapter, the CMFD acceleration technique for accelerating transport sweeps is described. CMFD is a technique

in which transport sweeps are accelerated by the solution of a lower-order diffusion eigenvalue problem. This acceler-

ation is required to converge realistic reactor physics problems in a reasonable number of transport sweeps. A recently

developed adCMFD variant is also described. This variant provides improved convergence and stability. Moreover,

the subplane technique for improving the accuracy and stability of the CMFD-accelerated 2D/1D transport problem is

described in Section 7.6. Finally, the PI scheme for solving the CMFD eigenvalue problem is described in Section 7.7.

Each step in the PI scheme requires the solution of a linear system, and the RBSOR technique for solving this linear

system is described in Section 7.8.
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8. General Cross Section Data Calculation

To solve the neutron transport equation for a reactor core, the properties that define its interactions with neutrons must

be known. These properties determine the coefficients of the transport equation, i.e., the macroscopic cross sections.

In Section 2.2, the steady-state Multigroup (MG) transport equation has been derived,

ΩΩΩ ·∇∇∇ψg(xxx,ΩΩΩ)+Σt,g(xxx)ψg(xxx,ΩΩΩ) =
G

∑
g′=1

∫
4π

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ)ψg′(xxx,ΩΩΩ

′)dΩ
′

+
χg(xxx)
4πkeff

G

∑
g′=1

∫
4π

νΣ f ,g′(xxx)ψg′(xxx,ΩΩΩ
′)dΩ

′,

xxx ∈V,ΩΩΩ ∈ 4π,1≤ g≤ G. (8.1)

Unlike nodal diffusion codes where the problem-dependent MG cross sections are obtained from the upstream lattice

codes, MPACT uses a direct transport method without spatial homogenization, so the calculation of MG cross sec-

tions should be based on a generic cross section library including isotopic cross sections and resonance parameters.

This chapter outlines generation of the MG library and calculation of the cross sections in the MG neutron transport

equation. In Section 8.1, the philosophy of the MPACT MG library is introduced. The calculation of the macroscopic

cross sections and their correlations to the library data are discussed in Section 8.2. In Section 8.3, the additional data

used for transient calculation are discussed. Section 8.4 addresses the data used for estimating the reactor thermal

power. For some of the isotopes and the certain energy groups, sophisticated treatments are needed to account for the

resonance self-shielding effects on MG cross sections. These methods will be discussed in Chapter 9.

8.1 The Multigroup Cross Section Library

The goal of the MPACT library development is to generate an accurate MG library for general LWR applications

with an acceptable computational efficiency in memory and computing time. The efficiency requirement suggests a

relatively coarse energy group structure with approximately 50 groups. Various cross section processing programs

and methods have been developed to enhance the accuracy of the neutronics simulation [57]. The recently developed

ENDF/B-VII.1 MPACT 51-group library has been verified through a code-to-code comparison for various benchmark

calculations between MPACT and the continuous-energy (CE) Monte Carlo codes [56]. Validations for the MPACT

cross section library and transport solvers are presented in Ref. [21].
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The native MPACT cross section library format, which is based on the HELIOS [34] and DeCART library [54] for-

mats, is the primary structure available for MPACT. The AMPX/SCALE and CASL XSTools code packages have

been improved and developed to generate the MG cross section library for the CASL neutronics simulator MPACT,

which is based on the subgroup method for resonance self-shielding calculation. The AMPX/SCALE code package

has been improved to include IR parameters and to enhance accuracy of resonance data and scattering matrices for the

Bondarenko approach and transport cross sections of H-1 by developing new modules. In addition, the CASL XSTools

have been developed to generate the subgroup data and the MPACT MG cross section library. A new simple superho-

mogenization method for U-238 has been developed to resolve reaction rate discrepancy issues due to angle-dependent

total cross sections, poor scattering matrices, and a poor resonance interference model at coarse group structure. The

details of these methods are presented in Ref. [57].

The required data for the steady-state transport calculation are the transport cross section, the fission cross section, the

average number of neutrons released from a fission reaction, the scattering matrices, and the fission spectrum for each

isotope. Since the absorption (and fission) cross sections are modified through the resonance treatment and are needed

for the depletion calculation, these cross sections should be included as well. The (n,2n) and (n,3n) cross sections

are also included for depletion calculations. High order (P1-P3) scattering matrices are also included. Therefore, the

multigroup data required in the library for steady-state calculation are as follows:

• total cross section σt,g

• transport cross section σtr,g

• absorption cross section σa,g

• fission cross section σ f ,g

• neutrons released from a fission ν

• scattering cross sections σs,l,g

• (n,2n) cross section σn→2n,g

• (n,3n) cross section σn→3n,g

• P0−3 scattering matrices σs,l,g′→g

• fission spectrum χg
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8.2 Macroscopic Cross Section

The macroscopic cross sections, e.g., Σt,g, are calculated by summing up the total cross sections of all isotopes in a

material region,

Σt,g = ∑
iso

Nisoσt,g,iso. (8.2)

In Eq. (8.2), Niso is the number density of an isotope in the unit of atoms/(barn · cm), where barn is a cross section

unit of 10−24cm2. In practice, the material density ρ (g/cm3) and the wt% component wiso are often specified, so the

number density of an isotope is calculated as,

Niso = ρwisoNAVO10−24/Aiso. (8.3)

where NAVO = 6.02214076×1023mol−1 is the Avogadro’s number, and Aiso is the atomic weight of iso in atomic mass

units.

The group-wise microscopic cross sections, such as σt,g,iso and σ f ,g,iso are obtained from the cross section library.

For the isotopes and energy groups without resonance behavior, these microscopic cross sections are pre-calculated

by typical PWR spectra [57] and are tabulated as a function of temperature. Linear interpolation is used when the

cross section data of a temperature are not available in the library. For the resonance isotopes in the resonance energy

groups, the self-shielding calculation should be performed to calculate the problem-dependent effective cross sections.

The details of self-shielding methods are documented in Chapter 9.

The fission spectrum χg(xxx) in Eq. (8.1) is written to be only dependent on space. In fact, different fissionable isotopes

have their own fission spectra provided in the cross section library. To preserve the neutron production for each energy

group, the averaged fission spectrum of a material region should be weighted by the isotopic fission sources,

χg(xxx) =
∑iso χg,iso(xxx)∑

G
g′=1 Niso(xxx)

∫
4π

νσ f ,g′,iso(xxx)ψg′(xxx,ΩΩΩ
′)dΩ′

∑iso ∑
G
g′=1 Niso(xxx)

∫
4π

νσ f ,g′,iso(xxx)ψg′(xxx,ΩΩΩ
′)dΩ′

. (8.4)

Typical MG cross section libraries include coefficients (or moments) of the expansion for scattering matrices, instead

of directly storing the data with angular dependence as in Eq. (8.1). To achieve the consistent expansion form, we

expand the scattering matrices by Legendre polynomials, and the angular fluxes in the scattering source term by

spherical harmonics [44],

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ) =

∞

∑
l=0

2l +1
2

Σs,l,g′→g(xxx)Pl(µ), (8.5)

ψg(xxx,ΩΩΩ) =
∞

∑
l=0

2l +1
4π

l

∑
m=−l

ψg,l,m(xxx)Yl,m(ΩΩΩ). (8.6)

If Eqs. (8.5) and (8.6) are inserted into the scattering source term, the spherical harmonic addition theorem can then
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be applied. When this is performed, the resultant scattering source term is shown in Eq. (8.7).

G

∑
g′=1

∫
4π

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ)ψg′(xxx,ΩΩΩ

′)dΩ
′ =

G

∑
g′=1

∞

∑
l=0

2l +1
4π

Σs,l,g′→g(xxx)
l

∑
m=−l

ψg′,l,m(xxx)Rl,m(ΩΩΩ). (8.7)

In this equation, Rl,m are the real components of the spherical harmonics. The microscopic cross sections σs,l,g′→g,iso

of each isotope are tabulated with a finite number of scattering order L (L = 3 in the MPACT library). A truncation

error is expected in the realistic calculation when using low-order scattering.

The transport correction has been discussed in Section 5.3.3 to save computational resources but mitigate the error

from the isotropic scattering assumption. With transport correction, Eq. (8.7) can be reduced to,

G

∑
g′=1

∫
4π

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ)ψg′(xxx,ΩΩΩ

′)dΩ
′ ≈ 1

4π

G

∑
g′=1

Σ
tr
s,g′→g(xxx)φg′(xxx). (8.8)

Consistently, the total cross section in Eq. (8.1) should be replaced by the transport cross section Σtr,g,

Σtr,g = Σt,g−Σs0,g +Σ
tr
s,g. (8.9)

In the MPACT library, σtr,g,iso is provided for each isotope, so Eq. (8.9) can be used reversely to compute the transport

corrected scattering cross section.

8.3 Transient Data Calculation

The methodology for solving transient problems will be discussed in Chapter 11, but the time-dependent MG neutron

transport equation and the precursor equation are given here to discuss the data needs for transient calculation,

1
vg

∂ψg(xxx,ΩΩΩ, t)
∂ t

=−ΩΩΩ ·∇ψg(xxx,ΩΩΩ, t)−Σt,g(xxx, t)ψg(xxx,ΩΩΩ, t)

+
G

∑
g′=1

∫
4π

Σs,g′→g(xxx,ΩΩΩ
′ ·ΩΩΩ, t)ψg′(xxx,ΩΩΩ

′, t)dΩ
′

+
1

4π

(
χp,g(xxx, t)(1−β (xxx, t))SF(xxx, t)+χd,g(xxx, t)Sd(xxx, t)

)
, (8.10)

∂Cτ(xxx, t)
∂ t

= βτ(xxx, t)SF(xxx, t)−λτCτ(xxx, t) ,τ = 1,2, ...,n(n = 6or 8). (8.11)

The subscript τ is the delayed group index, Cτ is the delayed neutron precursor concentration, βτ is the delayed neutron

fraction, λτ is the delayed group decay constant, and vg is the group velocity of neutrons. χp and χd are the prompt

and delayed fission spectra, and SF and Sd are the total fission source and the delayed neutron source. The rigorous

way of defining the kinetics data for prompt and delayed neutron sources should include the isotopic dependence of

these data, so the total fission source of group g in Eq. (8.10) should be explicitly defined as,

Sg = ∑
iso

χp,g,iso(1−βiso)SF,iso +∑
iso

χd,g,isoSd,iso. (8.12)
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In this equation,

SF,iso = ∑
g′

νg′,isoΣ f ,g′,isoφg′ , (8.13)

Sd,iso = ∑
τ

λτ,isoCτ,iso. (8.14)

Also, the precursor equation for each fissionable isotope is given as,

dCτ,iso(ttt)
dt

= βτ,isoSF,iso(ttt)−λτ,isoCτ,iso(ttt) ,τ = 1,2, ...,n. (8.15)

The delayed neutron fractions in Eq. (8.12) and Eq. (8.15) are defined as,

β(τ),iso =
∑g′ ν

(τ)
d,g′,isoσ f ,g′,isoφg′

∑g′ νg′,isoσ f ,g′,isoφg′
. (8.16)

In the MPACT library, χd,g,iso and χg,iso are included, so χp,g,iso can be calculated. νg′,iso and ν
(τ)
d,g′,iso are the average

and delayed number of neutrons released per fission. The energy group dependent ν
(τ)
d,g′,iso are not included in the

MPACT library. Instead, the effective βτ,iso are pre-generated using typical fission rates from a PWR configuration.

Recently, an option has been added in MPACT to evaluate βτ,iso on-the-fly using ν
(τ)
d,g′,iso from other kinetics data sets

[21].

The MPACT library provides the delayed group decay constants λτ,iso for every fissionable isotope. However, an-

other common approximation to save memory is neglecting the isotope dependence of precursor concentrations Cτ,iso

by calculating the effective λτ . Several options are available in MPACT, from the approximation of fission source

weighted λτ , to the full isotope-dependent calculation. This treatment is no more a concern for the 8-group delayed

data [24], since all the isotopes have the same set of decay constants.

8.4 Data for Thermal Power Calculation

To convert fission rates into energy deposition, which is the true heat generated from a reactor core, the energy release

per fission should be used. The energy released by a fission event consists of various energy modes. In addition to the

fission energy release, the capture of neutrons, e.g., via (n,γ) or (n,α) reactions also produce energy. Most recoverable

energy is released instantaneously in the forms of kinetic energy from fission products and fission neutrons, prompt

gamma rays, or gamma rays from the capture of neutrons. About 7% of energy is released some time after the fission

event, from the radioactive decay of fission products, in the forms of delayed beta and gamma rays. Equilibrium

delayed energy release is reached after a period of steady power history, and usually the time dependence of the

delayed energy is neglected in most reactor core simulations, except for estimating the decay heat during reactor

shutdown. Figure 8.1 provides the various energy release modes from neutron fission and capture, and the features of

these energy modes.
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Figure 8.1. Fission Energy Release

By default, MPACT uses the effective fission energy releases [53] for fissionable isotopes tabulated in the MPACT

library. This effective energy release includes an equilibrium delayed beta and gamma energy, and an averaged en-

ergy release contribution from neutron captures. The incident neutron energy is also considered through a typical

PWR spectrum. Given a reactor thermal power, the neutron flux should be normalized by the normalization factor f

determined in the following equation,

P(t) = f ∑
j

Vj ∑
iso

κ̃ f ,isoNiso, j ∑
g

σ f ,g,iso, jφg, j. (8.17)

where, κ̃ f ,iso is effective fission energy release for isotope iso (unit: J), and j is the region index. Spatially, the default

option in MPACT assumes that all the energy is deposited locally in the fission sites. This means only fuel rods

can produce heat. To consider the heat directly generated in moderator via neutron slowing-down and gamma ray

reactions, a direct moderator heating fraction is used when coupled with TH calculation.

To improve the energy deposition calculation, explicit energy deposition methods were developed: 1) The time de-

pendence of the delayed energy modes is modeled in depletion and transient problems; 2) The neutron capture and

slowing-down heat are calculated explicitly at the place where the reactions occur, so that all the material regions

produce energy; 3) Gamma heating effect is approximately considered by developing a gamma smearing model. The

details of these methods are presented in Refs. [66] [67].
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9. Cross Section Resonance Self-Shielding

To obtain the problem-dependent multigroup cross sections for MPACT, resonance self-shielding calculations must be

performed before the whole-core MOC calculations. In general, the goal of resonance self-shielding calculations is to

obtain the effective cross sections of an isotope at reaction channel x for group g,

σx,g (r) =

∫
∆ug

σx (r,u)φ (r,u)du∫
∆ug

φ (r,u)du
. (9.1)

It is not feasible to accurately determine the neutron spectra of a specific problem before one performs the 3D whole-

core transport calculations, so the spectra used in the calculation of effective cross sections are always approximated

through the energy and/or spatial domains.

In general, there are two approaches to perform the resonance self-shielding calculation. The approach that guarantees

accuracy in the energy domain is to solve the exact slowing-down equations for the problem of interest. Almost

no approximations are made on the energy-dependent cross sections except for neglecting the direct fission and up-

scattering contribution in the resolved resonance range. Continuous-energy (CE) cross sections (point-wise or ultra-

fine group) are needed to resolve the resonance behavior of neutron interactions with isotopes. Because of limited

computational resources, CE slowing-down codes such as CENTRM [91] and RMET21 [64] are usually designed for

pin cell calculations.

Another approach uses precomputed resonance integral (RI) tables which are established by the CE slowing-down

solution of a range of background cross sections. Based on the equivalence theory [79], different methods can be

derived to determine the equivalent cross sections for consideration of spatial self-shielding effects. The Bondarenko

background cross section method [8] is the conventional method, incorporating Dancoff factors to account for the

spatial self-shielding. The subgroup method [19] is another RI table-based method in which the RI tables are converted

to a set of subgroup levels and weights so that the equivalence cross sections are subgroup-level dependent. A few

years ago, another promising RI table based method, the embedded self-shielding method (ESSM), was proposed

[46, 92]. Compared to the conventional Bondarenko method that evaluates Dancoff factors outside the transport

calculation, ESSM provides tighter coupling between the neutron transport and self-shielding calculations, so that

the heterogeneous self-shielding effects are consistent with multigroup transport calculations of the whole system.

Recently, a more advanced method, ESSM-X [68], was developed to account for within-pin physics, such as pin-

resolved reaction rates and resonance interference.

The MPACT code can perform the subgroup method, ESSM, and ESSM-X for the resonance self-shielding calcu-
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lations based on multigroup libraries with subgroup parameters, such as the HELIOS library [34]. The MPACT

production library is processed with ENDF-BVII.0 and ENDF-BVII.1 cross sections, using SCALE-6.2 [9], as well

as a few auxiliary codes for generating subgroup parameters, resonance upscattering data, and transport cross section

data for hydrogen.

The presentation of the resonance self-shielding treatment begins with the derivation of the neutron spectra to be used

in the RI calculations in Section 9.1. The subgroup methods, ESSM, and ESSM-X are discussed in Section 9.2,

followed by the treatment of resonance interference and resonance scattering cross sections in Section 9.3. Two

methods to improve the performance of subgroup calculations are introduced in Sections 9.4 and 9.5.

9.1 The Resonance Self-Shielding Treatment

The rigorous approach to obtain the neutron spectrum in Eq. (9.1) is to solve the CE slowing down equation,

ΩΩΩ ·∇ϕ (r,u,ΩΩΩ)+∑
i

Σt,i (r,u)ϕ (r,u,ΩΩΩ)

=
1

4π
∑

i

∫ u

u−εi

Σs,i
(
r,u′

)
φ
(
r,u′

) expu′−u

1−αi
du′ , (9.2)

where αi is the maximum fraction of energy loss per neutron scattering off isotope i, as defined by its atomic mass A

relative to a neutron mass,

αi = (
Ai−1
Ai +1

)2 , (9.3)

and εi is the maximum lethargy gain per neutron scattering,

εi = ln
1
αi

. (9.4)

In Eq. (9.2), the neutron energy E has been transformed to lethargy u, as is conventionally done for slowing-down

equation. Three assumptions have been made in this equation for the resolved resonance energy range: (1) the scat-

tering source is treated by only considering s-wave elastic reactions, (2) up-scattering is neglected, and (3) direct

fission source is neglected. To decouple the lethargy dependence in the scattering source from lethargy u− εi to u, the

intermediate resonance (IR) approximation [41] is employed to achieve

ΩΩΩ ·∇ϕ (r,u,ΩΩΩ)+∑
i

Σt,i (r,u)ϕ (r,u,ΩΩΩ)

=
1

4π

(
∑

i
λiΣp,i (r)+∑

i
(1−λi)Σs,i (r,u)φ (r,u)

)
, (9.5)

where λi is the IR factor and Σp,i is the macroscopic potential scattering cross section. If Σs is written as Σs = Σp + ΣRS,

by neglecting λiΣRS,i and assuming isotropic fluxes in the second term of the right-hand side, a much simpler equation

can be formed without flux dependence in the source term:

ΩΩΩ ·∇ϕ (r,u,ΩΩΩ)+∑
i
(Σa,i (r,u)+λiΣp,i (r))ϕ (r,u,ΩΩΩ) =

1
4π

∑
i

λiΣp,i (r) . (9.6)
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For a homogenous material, the solution of Eq. (9.6) can be written as

φhom (u) =
∑
i

λiΣp,i

∑
i

Σa,i (u)+∑
i

λiΣp,i
. (9.7)

The equivalence theory [34] correlates the flux of a homogeneous material with a heterogeneous material by introduc-

ing the equivalence cross section Σeq,

φhet (u) =
∑
i

λiΣp,i +Σeq

∑
i

Σa,i (u)+∑
i

λiΣp,i +Σeq
=

Σb

∑
i

Σa,i (u)+Σb
, (9.8)

where Σb = ∑
i

λiΣp,i+Σeq is the background cross section. By introducing Eq. (9.8) into Eq. (9.1), the effective cross

section is only present through the background cross section, so a table of effective cross sections (or RI) can be

obtained by varying the background cross sections. With these pre-calculated RI tables, once the equivalence cross

sections of a region are properly determined, the effective cross sections can be directly interpolated rather than

integrated with the fluxes from the slowing-down solution.

All the RI table-based methods are aimed at estimating the equivalence cross sections of the system. The Bondarenko

background cross section method approximately determines the equivalence cross section. The ESSM iteratively

solves a fixed source problem (FSP) to converge the equivalence cross section of a system, while the subgroup method

evaluates the RI using a quadrature approximation so that equivalence cross sections are calculated on a set of quadra-

ture points, or subgroup levels. Once the equivalence cross section is obtained, the background cross section can be

used to either interpolate the RI for all reactions in ESSM or to complete the quadrature calculation for the subgroup

method.

9.2 The Subgroup Method, ESSM, and ESSM-X

The subgroup method transforms the integration variable from energy to absorption cross section. Eq. (9.8) indicates

that the flux depression is mainly due to the absorption cross sections. Although the absorption cross sections are a

strong function of energy (or lethargy), it is more efficient to perform the integration of Eq. (9.1) through absorption

cross section rather than neutron energy [34]:

σx,g =

∫
∆ug

σx (u)φ (u)du∫
∆ug

φ (u)du
=

∫
∆ug

f (u)du∫
∆ug

φ (u)du
=

∫
∆ug

f (σ) du
dσ

dσ∫
∆ug

φ (σ) du
dσ

dσ
, (9.9)

where f (u)=σx (u)φ (u). The integrals of Eq. (9.9) can be cast into a quadrature form represented by the subgroup

cross section levels (quadrature points) and weights,

σx,g u
∑
n

σx,g,nφg,nwx,g,n

∑
n

φg,nwx,g,n
. (9.10)
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The subgroup levels and weights are determined by solving a least squares problem for a set of pre-computed RI tables

parameterized by background cross sections. To obtain the same set of subgroup levels and weights for the numerator

and denominator of Eq. (9.10), the summation of the weights is forced to unity by including zero-level parameters

wx,g,0 and σx,g,0 [34].

The subgroup-level dependent flux φg,n in Eq. (9.10) is determined by solving a fixed source problem: the multigroup

form of Eq. (9.6),

ΩΩΩ ·∇ϕg,n(r,ΩΩΩ)+
[
Σa,g,n(r)+λgΣp(r)

]
ϕg,n(r,ΩΩΩ) =

1
4π

λgΣp(r)∆ug . (9.11)

Since the subgroup parameters are generated for each resonance isotope independently, it is ideal to perform the

subgroup FSP calculations for each isotope separately. In practical calculations, to save computing time, the resonance

isotopes are grouped into a few categories. Table 1 shows a typical resonance category set. For each category, the

FSPs are performed for each energy group and each subgroup level. The resulting fluxes can be used in Eq. (9.10) to

estimate the effective cross sections, but we convert the flux into equivalence cross section first. The explanation of

this conversion and the detailed subgroup equations are discussed in Section 9.5.

Category Isotopes

1 U-238

2 U-235, other actinides, FPs

3 Clad isotopes

4 Absorbers (AgInCd, Gd, Hf, etc.)

5 Tungsten

Table 1: A typical resonance category set in MPACT library

ESSM also solves the FSP to determine the equivalence cross sections, but the quadrature representation is replaced

by iterations between the fixed source calculations, such as n=1 in Eq. (9.11), and RI table interpolation. Figure 9.1

depicts the ESSM procedures. The effective absorption is a monotonically increasing function of background cross

section, as shown by the solid black line. Considering a problem with a true effective cross section σa,true for which

the ESSM is searching, the method starts with an initial guess of σb,0 associated with an effective σa,0 interpolated

from the RI tables. Relative to σa,true, the smaller σa,0 introduced into Eq. (9.11) for solving the FSP should result in a

lager background cross section σb,1 relative to σb,true. Therefore, the iteration is required between the FSP and the RI

interpolation to converge the background cross sections, or specifically, the equivalence cross sections.

Comparisons of the subgroup method and ESSM yield the following important differences: (1) the subgroup method

requires a separate optimization code to calculate the subgroup levels and weights, which imposes quadrature errors;

ESSM is a thoroughly embedded method incorporating everything within the transport calculations, and (2) the com-

putational time of the subgroup method is predetermined by the number of subgroup levels used in the fixed source
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calculations, while the computational time of ESSM is cross section-dependent relative to the average number of

iterations.

The ESSM-X method performs an additional quasi-1D slowing-down calculation [68] to improve the accuracy of the

within-pin resonance effects such as resonance interference and intra-pin temperature distributions,

[
Σt,i(u)+Σeq,i(u)

]
φi(u) = Q̄i(u)+Σeq,i(u) . (9.12)

This equation is actually in a 0-D form, but 1-D information for each fuel region i is embedded in the effective

scattering source Q̄i(u) and the equivalence cross section Σeq,i(u). Detailed description of these terms can be found in

Liu et al. [68].

Figure 9.1. Conceptual illustration of ESSM procedures.
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9.3 Resonance Interference and Resonance Scattering

All the RI table-based methods such as the subgroup method and ESSM have a common difficulty in treating interfer-

ence effects among resonant isotopes. Conventionally, the RI tables are generated at different temperatures and dilu-

tions for each single resonant isotope by solving the slowing-down equation with CE cross sections. The interference

effect is neglected at this step and is usually being considered afterward on the multi-group level using Bondarenko

iteration described in WIMS code [2]. In MPACT, Bondarenko iteration is also used for the subgroup method and

ESSM. More accurate models for resonance interference requires on-the-fly slowing-down calculation [65], which

is not implemented into the subgroup method and ESSM due to the additional computation burdens. Nevertheless,

ESSM-X can model resonance interference by solving the quasi-1D slowing-down equation.

In addition to absorption and fission, the RI tables of resonance scattering are available in the MPACT multigroup

library. The resonance scattering effects can be approximately modeled by correcting the 2-D scattering matrices

using self-shielded total scattering cross sections. The products of subgroup calculations are the shielded absorption

cross sections of resonance nuclides, as well as the tables of the equivalence cross sections against subgroup levels

for each resonance category. The shielded absorption cross section of a resonance nuclide is initially converted back

to the effective absorption of the representative isotope of the category so that the equivalence cross section can

be interpolated using the table of Σeq,n (σa,n) (see Section 9.5). Then the background cross section associated with

shielded absorption can be readily determined. For ESSM, the background cross section associated with the shielded

absorption is already determined when the iteration is complete. The background cross section is used to interpolate

the integral of resonance scattering, and the shielded P0 scattering cross section of each resonance group can be

calculated. Compared to the unshielded scattering cross section provided by the library, a ratio is defined as

fiso,g =
σ shielded

s,iso,g

σunshielded
s,iso,g

. (9.13)

The transport corrected scattering matrix can be renormalized by multiplying the ratios:

σ
shielded
s0,iso,g→g′ =


fiso,gσunshielded

s0,iso,g→g′ , g′ 6= g ,

fiso,g

(
σunshielded

s0,iso,g→g′ −∑
g′′

σunshielded
s1,iso,g→g′′

)
, g′ = g.

(9.14)

The corrections for high order scattering terms are performed using the same ratios as for the P0 scattering.

9.4 Lumped Parameter MOC for Subgroup

A typical subgroup calculation consists of several loops: (1) over resonant groups, (2) over resonant categories, and

(3) over sublevels. These are typically solved one at a time, but the multigroup kernels allow for all or at least some
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to be solved concurrently. The calculation scheme for the three-loop approach is shown in Algorithm 9.1. As can be

seen, inside these loops, there is an iteration loop in which transport sweeps for each resonant group, category, and

level are performed. Here, Σp is the potential cross section, Σt is the total cross section, and Σeq is the equivalence

cross section. The convergence criteria here are based on the maximum relative difference in the fine mesh scalar flux

distribution for any single group, currently checking to a 10−6 tolerance.

Algorithm 9.1: Pseudocode for pre-existing subgroup scheme with group on outermost loop.
1: for each resonant group (g from gres,beg to gres,end) do

2: for each subgroup category (c from 1 to Ncat(g)) do

3: for each subgroup level (l from 1 to Nlevels) do

4: Setup Σt,g,c,l based on Σa,g,c,l and λgΣp

5: Setup source for this group/category/level based on λgΣp

6: for each iteration (i from 1 to Niters) do

7: Perform transport sweep for this group/category/level

8: Compare residual based on scalar flux (terminate if below criteria)

9: end for

10: Calculate equivalence cross section (Σeq,g,c,l)

11: end for

12: end for

13: end for

To take advantage of the multigroup kernels implemented into MPACT (see Section 5.5.4), the scheme must be re-

structured slightly. In this document, a single combination of group/category/level is considered to be a pseudogroup.

The number of pseudogroups for the entire subgroup calculation will be the product of the number of resonant groups,

the average number of subgroup categories per group, and the number of subgroup levels. In theory, the number of

categories can vary from group to group, but this does not seem to be the case for the current libraries available to

MPACT. In the 47-group library [55] used in this work, there are 17 resonant groups, 4 categories, and 4 levels, yield-

ing 272 pseudogroups. Based on this concept, a transport kernel could be constructed to sweep over all pseudogroups

concurrently, effectively vectorizing the three loops of the original algorithm. However, the sources, cross sections,

scalar fluxes, and angular fluxes must be stored for each pseudogroup up front, whereas in the previous scheme, only

one group of storage at a time was necessary. Algorithm 9.2 shows the pseudocode for the refactored scheme, taking

advantage of the multigroup kernel concept.
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Algorithm 9.2: Pseudocode for subgroup scheme using the multigroup transport kernel.
1: for each pseudogroup (pg from 1 to Npseudogroups) do

2: Setup and store Σt,pg for this pseudogroup based on Σa,pg and λpgΣp

3: Setup and store source for this pseudogroup based on λpgΣp

4: end for

5: for each iteration (i from 1 to Niters) do

6: Perform transport sweep for all pseudogroups

7: Compare residual based on scalar flux (terminate if below criteria)

8: end for

9: for each pseudogroup (pg from 1 to Npseudogroups) do

10: Calculate equivalence cross section Σeq,pg

11: end for

As might be expected, the memory required for storing the source and flux data for 272 pseudogroups can be a concern.

One way to keep the memory low while allowing the scheme to make use of the multigroup kernels is to divide the

pseudogroups into batches. Algorithm 9.3 shows the pseudocode for the batched approach, where each batch contains

a starting and stopping pseudogroup index:

Algorithm 9.3: Pseudocode for subgroup scheme using the multigroup transport kernel and batching.
1: for each batch (b from 1 to Nbatch) do

2: for each pseudogroup (pg from pgbeg(b) to pgend(b)) do

3: Setup and store Σt,pg for this pseudogroup based on Σa,pg and λpgΣp

4: Setup and store source for this pseudogroup based on λpgΣp

5: end for

6: for each iteration (i from 1 to Niters) do

7: Perform transport sweep for all pseudogroups

8: Compare residual based on scalar flux (terminate if below criteria)

9: end for

10: for each pseudogroup (pg from pgbeg(b) to pgend(b)) do

11: Calculate equivalence cross section Σeq,pg

12: end for

13: end for

In addition to using multigroup kernels, a lumped parameter MOC approach has been applied to the subgroup self-

shielding problem [81]. Because the self-shielding calculation is a purely absorbing fixed source problem, and multiple

sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for

the instantaneous propagation of the flux across a spatial domain without the need to sweep along all segments in
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a ray as is typically done. This requires an initial sweep to tabulate lumped parameter coefficients for the angular

flux propagation. Subsequent sweeps use the lumped parameters to instantly update the angular flux, bypassing all

calculations along the ray. Once the boundary angular fluxes are considered to be converged, an additional sweep is

completed to tally the scalar flux.

Because the MOC kernels in MPACT sweep over two angles travelling in opposite directions (forward/backward) at

the same time, effectively, two equations are needed:

ϕ
out, f or
pg = ϕpgin, f orApg +Bpg, (9.15a)

ϕ
out,back
pg = ϕpgin,backApg +Cpg. (9.15b)

Here, ϕ
in, f or
pg and ϕ

in,back
pg are the incoming angular fluxes at each end of an MOC ray (boundary fluxes), one forward

along the ray and one backward. Similarly, ϕ
out, f or
pg and ϕ

out,back
pg are the outgoing angular fluxes. A, B, and C are the

lumped parameter coefficients used to condense the sweep.

To visualize this, consider a ray in a simple pin cell problem (Figure 9.2). On the left is the discretization showing 5

segments along the ray (blue) with the incoming and outgoing angular fluxes at the ends of the ray. On the right is the

same problem but with all 5 segments condensed into one, as in the lumped parameter approach.

Figure 9.2. Visualization of MOC ray tracing (left) and lumped parameter (right) on a pin cell.

To reiterate, this is only valid and effective because the source is not changing between iterations, as is the case during

the eigenvalue calculation sweeps. Thus, the A/B/C lumped parameters can be used in a fast intermediate kernel that

only updates the outgoing angular flux.

Two methods are available to derive equations for lumped parameters. It can be concluded that A will be a product
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of the exponential terms for each segment, (9.16a). With A established, B and C can be easily calculated using the

incoming and outgoing angular flux values, Eqs. (9.16b) and (9.16c), assuming a typical sweep is performed in

calculating the factors. Here, Nseg is the number of segments along an MOC ray, Σt,i,pg is the total cross section, and

li is the segment length:

Apg =
Nseg

∏
i=1

e−Σt,i,pgli , (9.16a)

Bpg = ϕ
out, f or
pg −ϕ

in, f or
pg Apg, (9.16b)

Cpg = ϕ
out,back
pg −ϕ

in,back
pg Apg. (9.16c)

The lumped parameters must be calculated and saved for each angle and ray. Because there will only be three values

over O(100) segments, the storage for this is not concerning. Figure 9.4 shows the pseudocode for lumped parameters,

which is based on the multigroup kernel with batching. The key changes to note are (1) there is an initial sweep to

calculate the lumped parameters (line 6), (2) there are several “fast” sweeps that simply apply the factors to update the

angular flux (per Eq. (9.15) and line 8), and (3) a final standard sweep is completed to tally the scalar flux (line 11),

which is required for the equivalence cross section calculation (line 13).

Algorithm 9.4: Pseudocode for lumped parameter subgroup scheme using the multigroup transport kernel and batch-

ing.
1: for each batch (b from 1 to Nbatch) do

2: for each pseudogroup (pg from pgbeg(b) to pgend(b) do

3: Setup and store Σt,pg for this pseudogroup based on Σa,pg and λpgΣp

4: Setup and store source for this pseudogroup based on λpgΣp

5: end for

6: Perform and initial sweep accumulating the Apg/Bpg/Cpg lumped parameters

7: for each iteration (i from 2 to Niters) do

8: Perform a transport sweep applying Apg/Bpg/Cpg parameters for this batch

9: Compare residual based on boundary angular flux (terminate if below criteria)

10: end for

11: Perform a final, normal sweep accumulating scalar flux (φpg)

12: for each pseudogroup (pg from pgbeg(b) to pgend(b)) do

13: Calculate equivalence cross section Σeq,pg

14: end for

15: end for
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Since only the last iteration yields a scalar flux distribution, the convergence residual for this scheme is based on the

angular flux updates instead of the scalar flux, which is used in the current scheme. Choosing the correct convergence

criteria is important to ensure consistency between these two schemes. The current scheme imposes a maximum

change of 1× 10−6 for the scalar flux in any region for each pseudogroup. Since the new scheme will perform an

additional sweep once the angular flux is considered to be converged, a similar maximum change is imposed on the

angular flux, but with a criterion of 1× 10−5. In practice, this has been observed to be conservative, in most cases

requiring one additional iteration, which is acceptable since it is only one additional fast iteration.

This approach would not be beneficial in problems with fully vacuum radial boundary conditions in serial. In this

scenario, only one iteration would be necessary since the boundary conditions do not need to be converged, as a zero

incoming angular flux is correct. This is not a likely scenario since most problems are executed with quarter symmetry

and in parallel. It is expected that larger spatial domains will reap greater benefits. Pin cell problems would naturally

have the least to gain since there are so few segments along a ray. The best case would likely be a full core problem

without any radial decomposition, although this is likely impractical because of the substantial memory required. In

general, at least 8 radial partitions are used on a quarter core slice to allow for an acceptable amount of memory per

core, where a domain consists of a few assemblies of data. In the results section, 73 radial domains are used, which

amounts to roughly an assembly per domain, and good performance is observed there.

9.5 Multigroup and 1-Group Subgroup

Standard subgroup calculation requires the FSPs to be solved for every 2D plane in each resonance category, en-

ergy group, and subgroup level. To improve the performance of subgroup calculation, besides optimizing the MOC

transport sweeper as discussed in Section 9.4, efforts can also be made to reduce the number of FSPs, which leads

to the concept of 1-group subgroup. This section compares the standard multigroup and the 1-group subgroup for-

mulations. Also, the detailed equations for the subgroup method are provided as a supplement to Section 9.2. 1-

group/multigroup in this section should be interpreted as energy integration of subgroup equation. This is different

from the 1-group/multigroup kernels related to the solution scheme of MOC sweep discussed in Section 9.4.

We start with the subgroup FSP of Eq. (9.11),

ΩΩΩ ·∇ϕg,c,n(r,ΩΩΩ)+
[
Σa,g,c,n(r)+λgΣp(r)

]
ϕg,c,n(r,ΩΩΩ) =

1
4π

λgΣp(r)∆ug . (9.17)

As mentioned in Section 9.2, the multigroup subgroup calculation solves Eq. (9.17) for every energy group g, reso-

nance category c, and subgroup level n, where

Σa,g,c,n =

∑
i∈c

NiIi
a,g,∞(Tloc)

Ir
a,g,∞(Tloc)

σ
r
a,g,n(Tloc),
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and

λgΣp = ∑
i

λ
i
gΣ

i
p . (9.18)

Ii
a,g,∞(Tloc) is the infinite absorption RI per lethargy for isotope i at local temperature Tloc. To adjust the subgroup level

for nonuniform temperature effect,

σ
r
a,g,n(Tloc) =

σ r
a,g(Tloc)

σ r
a,g(Tave)

σ̄
r
a,g,n = f (Tloc)σ̄

r
a,g,n, (9.19)

where σ̄ r
a,g,n is the subgroup level of the representative isotope in category c in the library. The temperature adjusting

ratio can be determined by various methods. In MPACT, base cross sections in the MPACT library are used for

σa,g(Tloc) and σa,g(Tave) [69], which are generated using a typical PWR spectrum.

Although the fluxes solved from Eq. (9.17) can be directly used to calculate the effective cross sections, MPACT

converts the flux to the equivalence cross section first. By integrating Eq. (9.8) over an energy group, we obtain:

φg,c,n =
Σb,g,c,n∆ug

Σb,g,c,n +Σa,g,c,n
=

(∑i λiΣp,i +Σeq,g,c,n)∆ug

(∑i λiΣp,i +Σeq,g,c,n)+Σa,g,c,n
. (9.20)

Equation (9.20) is reversed to determine the equivalence cross section Σeq,g,c,n in terms of φg,c,n. Instead of directly

using φg,c,n to calculate effective cross sections, this detour option is chosen because the dependence of Σeq,g,c,n on

σ r
a,g,n is much weaker than the dependence of φg,c,n on σ r

a,g,n. Therefore, the number of σ r
a,g,n capable of describing

this dependence can be smaller than the number of subgroup levels used in the quadrature calculation of the effective

cross sections, leading to fewer fixed source calculations. Specifically, MPACT uses four subgroup levels for the FSP

calculations, and seven levels for the evaluation of effective cross sections. Interpolation is needed to fold the table

of Σeq,g,c,n(σ
r
a,g,n) (4 levels) into Σeq,g,c,m(σ

r
a,g,m) (7 levels). This table is not only used for the representative isotope,

but it is also used for the other resonance isotopes in the same category c, so a conversion is needed from a resonance

isotope to the representative isotope about the subgroup level,

σ
i,arg
a,g,m =

Ir
a,g,∞(Tloc)

Ii
a,g,∞(Tloc)

f (Tloc)σ̄
i
a,g,m . (9.21)

Here, f (Tloc) is defined as the same as Eq. (9.19), but is about isotope i. Using σ
i,arg
a,g,m as the argument to obtain

Σeq,g,c,m(σ
i,arg
a,g,m), the background cross section can be computed as

Σ
i
b,g,m = Σeq,g,c,m(σ

i,arg
a,g,m)+λgΣp . (9.22)

With all the subgroup parameters, the effective cross section is computed as

σ
i
a,g =

∑
m

σ̄ i
a,g,m

Σi
b,g,m

Σi
a,g,m(Tloc)+Σx,g+Σi

b,g,m
wi

a,g,m(Tloc)

∑
m

Σi
b,g,m

Σi
a,g,m(Tloc)+Σx,g+Σi

b,g,m
wi

a,g,m(Tloc)
, (9.23)

where Σi
a,g,m(Tloc) = Ni f (Tloc)σ̄

i
a,g,n and Σx,g = ∑

j 6=i
Σ

j
a,g. This equation means the temperature adjustment is only

performed within the flux term by Σi
b,g,m and Σi

a,g,m(Tloc). In addition, Σx,g term includes the absorption cross section
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of all the other resonance isotopes in the same material, so Bondarenko iterations are performed here to determine a

converged set of σ i
a,g for all resonance isotopes.

In the 1-group subgroup scheme, a similar procedure is performed by integrating over all resonance groups. Two

approximations have been made: (1) the IR source is approximated by averaging over the entire resonance energy

range, and (2) subgroup levels for FSP are no longer group-dependent. The FSP for 1-group subgroup calculation is

given as

ΩΩΩ ·∇ϕc,n(r,ΩΩΩ)+ [Σa,c,n(r)+λΣp(r)]ϕc,n(r,ΩΩΩ) =
1

4π
λΣp(r)∆u. (9.24)

This equation should be solved for every resonance category c and subgroup level n (no group dependence), where

Σa,c,n =

∑
i∈c

∑
g

NiIi
a,g,∞(Tloc)∆ug

∑
g

Ir
a,g,∞(Tloc)∆ug

σ
r
a,n(Tloc) ,

and

λΣp =

∑
g

∑
i

λ i
gΣi

p∆ug

∑
g

∆ug
. (9.25)

To adjust the subgroup level for temperature effect,

σ
r
a,n(Tloc) =

σ r
a(Tloc)

σ r
a(Tave)

σ̄
r
a,n = f (Tloc)σ̄

r
a,n , (9.26)

where σ̄ r
a,n can be the subgroup level for any energy group. MPACT uses the first resonance group defined in the cross

section library. σa(Tloc) and σa(Tave) are obtained by averaging the base cross section over all resonance groups with

flat flux. Once the solution of Eq. (9.24) is available for all subgroup levels, a table Σeq,c,n(σ
r
a,n) can be obtained by

the level-dependent flux,

Σeq,c,n =
Σa,c,nφc,n

∆u−φc,n
−λΣp . (9.27)

Similarly, the table Σeq,c,n(σ
r
a,n) (n=1-4) can be interpolated into Σeq,c,m(σ

r
a,m) (m=1-7). A conversion is needed from

a resonance isotope to the representative isotope about the subgroup level,

σ
i,arg
a,g,m =

Ir
a,g,∞(Tloc)

Ii
a,g,∞(Tloc)

f (Tloc)σ̄
i
a,g,n . (9.28)

Note that Eq. (9.28) retrieves the group index by assuming that the table Σeq,c,m(σ
r
a,m) applies to all resonance groups.

In other words, the differences in the source term (λΣp) among groups are neglected when estimating the dependence

of Σeq,c,m on σ r
a,m. The calculations of effective cross sections using subgroup quadratures are identical between

multigroup and 1-group formulation.
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10. Nuclide Depletion and Decay

In the simulation of depletion, there are two main computational components: (i) the point depletion solver and (ii)

time integration algorithm. With regards to the point depletion solver, MPACT can call the ORIGEN code [38], which

is included in the SCALE package [76], or it can use an in internal solver. MPACT’s internal depletion solver is

consistent with the methodology of an earlier version of ORIGEN. The internal solver also uses a separate depletion

library. In the remainder of this chapter, the methodology for the internal point depletion solver is described. Then the

coupling of the nuclide transmutation equations to the rest of MPACT and the time stepping algorithm are described.

The coupling of the transmutation equations and timestepping algorithm apply to both the ORIGEN and internal point

depletion solution algorithms.

10.1 Nuclide Transmutation Equation and its Solution

This section first presents the nuclide transmutation equation and common approximations employed for its numerical

solutions. The numerical solution of this equation is then described for the internal MPACT solver. A brief discussion

of other numerical solution methods is also given.

10.1.1 Nuclide Transmutation Equation

A general expression for the rate of depletion of a nuclide by neutron reactions or radioactive decay can be written as

the following coupled system of N first-order differential equations:

dXi(t)
dt

=
N

∑
j=1

f j→iλ jX j(t)+ φ̄

N

∑
k=1

gk→iσkXk(t)− (λi +σiφ̄)Xi(t), 1≤ i≤ N, (10.1)
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where

Xi(t) = density of nuclide i at time t,

λi = radioactive disintegration constant for nuclide i,

σi = 1-group spectral averaged neutron absorption cross section of nuclide i,

φ̄ = time-integrated 1-group neutron scalar flux ,

f j→i = fraction of radioactive disintegrations by nuclide j that lead to the formation of nuclide i,

gk→i = the fraction of neutron reactions by nuclide k that lead to the formation of nuclide i.

Equation (10.1) already contains some approximations: specifically, the treatment of the scalar flux. This term is time-

dependent. However, to avoid the need to solve a non-linear equation, it is assumed that the scalar flux is invariant in

time over the time interval of interest. Generally, this is an adequate assumption, and it only breaks down when the

discretized time step becomes too large. Another approximation implicit in Eq. (10.1) is the assumption of no space

dependence. There are several different physical phenonma that drive the relocation of certain nuclides. Moreover,

the scalar flux is also a spatially dependent quantity. The point approximation for 0D is also very common, and

for general applications it is assumed that the spatial discretization needed for the transport equation is sufficient to

discretize the scalar flux in space. For LWR analysis, the operating temperatures are typically low enough that there is

typically minimal diffusion of nuclides in the UO2, with the potential exception of fission gas. However, most codes

that solve the coupled neutron transport and transmutation equations do not model fission gas release because this

physical phenomenon can typically be neglected when solving the transport equation.

Returning to Eq. (10.1), if the nuclide concentrations are expressed as a vector,

X = (X1,X2, . . . ,Xi, . . . ,XN)
T ,

then Eq. (10.1) can be written in matrix form as:

dX(t)
dt

= A ·X(t), (10.2)

where A is an N×N matrix constructed from characteristic neutron reaction rates and fractions, as well as radioactive

decay rates and fractions.

In principle, the matrix exponential method can be used to obtain the solution of Eq. (10.2) as:

X(t) = exp(At)X(0), (10.3)

where the vector X(0) represents the known particle number densities at the beginning (the initial condition). To

facilitate the subsequent derivations, Eq. (10.3) is rewritten assuming a discretization in time.

X(tn +∆t) = exp(A∆t)X(tn). (10.4)

Obtaining X(tn +∆t) then becomes a matter of calculating exp(A∆t).
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10.1.2 Computing the Matrix Exponential

According to the literature, the calculation of the matrix exponential can be performed in one of 19 dubious ways

[71]. Several have been used for the solution of the nuclide transmutation equations. The earliest approach taken, used

in ORIGEN, is to use a Taylor series expansion, with lots of modifications for accuracy and efficiency. More recent

implementations have favored the Chebyshev Rational Approximation method (CRAM), now used in ORIGEN, as

well as Krylov methods built on the Arnoldi iteration.

In MPACT, the matrix exponential is computed using a Taylor series expansion:

exp(A∆t) = I +A∆t +
(A∆t)2

2!
+ · · ·=

∞

∑
m=0

(A∆t)m

m!
. (10.5)

However, if all the nuclides are included in the transition matrix A, then A becomes very large, sparse, and ill-

conditioned; this complicates the calculation of the matrix exponential equation in Eq. (10.3)). Issues also arise in

obtaining sufficient accuracy of the solution because of the floating point arithmetic involved in the summation of very

large and very small numbers. Consequently, steps are taken to split and precondition the A.

Preconditioning/Splitting of the Nuclide Transmutation Matrix

Because the full problem cannot be solved efficiently by the Taylor series expansion, the matrix is divided into two

parts: one for long-lived nuclides, and the other for short-lived nuclides. This has the effect of lowering the condition

number of the transmutation matrix by removing the highest magnitude coefficients and leaving only those coefficients

with very small magnitudes. With this splitting, the matrix exponential in Eq. (10.3) can be accurately and efficiently

computed for the long-lived nuclides only. The solution of the short-lived nuclides is obtained by a different means

and is discussed later in the chapter. The criterion for the matrix separation is based on the removal half-life of a

nuclide. Since any concentration of a nuclide essentially becomes zero after 10 half-lives, the long-lived nuclides are

defined to be the nuclides for which the irradiation time interval is less than 10 times their removal half-life, i.e.,

∆t ≤ 10tr,1/2 where tr,1/2 =

(
ln2

λi +σiφ̄

)
. (10.6)

Given that the transition matrix is only considers long-lived nuclides, the suggestion of Ball and Adams [7] that the

transitions involving short-lived nuclides with large removal rates be considered instantaneous is adopted. If we have

a decay chain of A→ B→C and the removal half-life for B is very small, then the matrix is reformulated for the decay

chain A→ C, where the transition coefficient is formulated considering the impact of the intermediate short-lived

nuclide, B, that has been removed. Similarly, if the removal half-life for A is very small, the decay chain is rewritten

as B→C. However, in this case, the amount of isotope B initially present must be adjusted to include the short-lived

precursor A so that the initial particle number density of B will be equal to A+B for the matrix exponential calculation.

In this process of removing these short-lived nuclides to create a reduced transition matrix (or preconditioned transition

matrix), special care must be taken to ensure the chains are collapsed correctly.
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A generalized treatment of the full transition matrix to produce the reduced transition matrix is achieved by condensing

sections of the decay chains involving short-lived nuclides and adjusting the coefficients for the formation of the long-

lived nuclides at the ends of these intermediate chains. Practically, this done by searching through the individual decay

chains and forming a queue of all short-lived precursors for each long-lived nuclide. The queue is terminated when

the farthest removed precursor is no longer short-lived. Bateman’s equations are then applied to this queue to obtain

the rate constants for the reduced transition matrix. For an arbitrary forward branching chain, the general solution for

the ith member in a chain at time tn +∆t may be written in the form:

Xi(tn +∆t) = Xi(tn)e−di∆t +
i−1

∑
k=1

Xk(tn)

[
i−1

∑
j=k

(
e−d j∆t − e−di∆t

di−d j
a j+1, j

i−1

∏
m=k,m 6= j

am+1,m

dm−d j

)]
. (10.7)

The notation ai, j is used for the first-order rate constant that comes from Eq. (10.1), and di = −ai,i. In the present

application, Eq. (10.7) is recast in the form given below:

Xi(tn +∆t) = Xi(tn)e−di∆t +
i−1

∑
k=1

Xk(tn)
i−1

∏
m=k

am+1,m

dm

[
i−1

∑
j=k

(
d j

e−d j∆t − e−di∆t

di−d j

i−1

∏
m=k,m 6= j

dm

dm−d j

)]
, (10.8)

by multiplication and division of
i−1

∏
m=k

dm .

The first product in Eq. (10.8) is the fraction of atoms of isotope k that follow a particular sequence of decays and

captures. If this product becomes less than 10−6, contributions from nuclide k and its precursors to the concentration

of nuclide i are neglected. This procedure is unnecessary for evaluating the outer summation because all the terms in

this sum are known to be positive. To avoid a division by zero when two removal constants are approximately equal

(di ≈ d j ), the bracketed term in Eq. (10.8) is replaced by:

i−1

∑
j=k

(
d j

e−d j∆t − e−di∆t

di−d j

i−1

∏
m=k,m 6= j

dm

dm−d j

)
≈

i−1

∑
j=k

(
d j∆te−d j∆t

i−1

∏
m=k,m6= j

dm

dm−d j

)
.

An analogous expression is derived for the case when dm≈ d j. These forms of the Bateman equations are applied when

two isotopes in a chain have the same diagonal elements or when a cyclic chain is encountered, in which case a nuclide

is considered to be its own precursor. The new rate constant can then be considered as the coefficient of Xk(tn), where

the product over m is over the queue of short-lived nuclides. In this approach, the Bateman solutions complement

the exponential matrix method. The exponential matrix method is quite accurate when the transition coefficients are

small, but it is less accurate when including large rate constants are included. Conversely, the Bateman solution has

numerical difficulties for extremely small rate constants, but it is stable and accurate for large rate constants.

Calculation of the Long-lived Nuclide Number Densities

As a result of the splitting up and preconditioningthe full transition matrix to the reduced transition matrix the Taylor

series expansion for the matrix exponential calculation of the long-lived nuclides is written as:

exp(Ã∆t) = I + Ã∆t +
(Ã∆t)2

2!
+ · · ·=

∞

∑
m=0

(Ã∆t)m

m!
. (10.9)
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However, even with the removal of the short-lived nuclides from the transition matrix A, it is still quite large and

sparse, and it is and computationally inefficient to store the reduced transition matrix, Ã, in its entirety. To avoid

having to store the entire matrix and still be able to compute the Taylor series of Eq. (10.9) efficiently, a recursion

relation for the expansion is developed. Considering the Taylor expansion for the equation of a single nuclide in Ã,

the terms may be equivalently rewritten as:

X̃i(tn +∆t) =X̃i(tn)+∆t
N

∑
j=1

ãi, jX̃ j +
∆t
2

N

∑
k=1

(
ãi,k∆t

N

∑
j=1

ãk, jX̃ j

)

+
∆t
3

N

∑
m=1

[
ãi,m

∆t
2

N

∑
k=1

(
ãm,k∆t

N

∑
j=1

ãk, jX̃ j

)]
+ . . . .

(10.10)

Here the tilde denotes that the equations are operating on just the long-lived nuclides. From Eq. (10.10) the recursion

relation becomes more apparent, where each term in the expansion can be written as:

Cm+1
i =

t
m+1

N

∑
j=1

ãi jCm
j , where C0

i = X̃i(tn). (10.11)

Lastly, the number of terms to include in the Taylor expansion for sufficient accuracy in the computation of the matrix

exponential must be determined. For this, the following norm from Lapidus and Luus [60]:

||Ã||= min

[
max

1≤ j≤N

(
N

∑
i=1
|ãi, j|

)
. max

1≤i≤N

(
N

∑
j=1
|ãi, j|

)]
. (10.12)

Calculation of the Short-lived Nuclide Number Densities

The nuclide number densities for short-lived nuclide chains beginning with a long-lived precursor are assumed to be

in secular equilibrium with their precursors. Therefore, the short-lived nuclide concentrations are computed once the

long-lived concentrations are known. To compute the short-lived nuclide number densities, a simple iterative method

is used. Since secular equilibrium is assumed, the system of differential equations of the short-lived nuclides can be

written as a a system of algebraic equations because the time rate of change is zero:

dX̂i

dt
≈ 0 =

N

∑
j=1

âi, jX̂ j. (10.13)

Here the “hat” denotes that we are operating on just the short-lived nuclides. Equation (10.13) can be solved easily

using a Gauss-Seidel iteration. The coefficients in Eq. (10.13) have the property that all the diagonal elements of the

matrix are negative and all off-diagonal elements are positive. The algorithm involves inverting Eq. (10.13) and using

assumed or previously calculated values for the unknown concentrations to estimate the concentration for the next

iteration:

X `+1
i =− 1

âi,i
∑
j 6=i

âi, jX̂ `
j . (10.14)

This iterative procedure has been found to converge rapidly since cyclic chains are not usually encountered for these

short-lived isotopes, and the procedure reduces to a direct solution.
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10.1.3 MPACT Point Depletion Solution Algorithm

The previous subsection described how the matrix exponential is formulated and calcuated. In this description, the

overall procedure for this was mentioned, but was not explicitly defined. This subsection explicitly defines the algo-

rithm for performing the point depletion calculation in MPACT. Within ORIGEN, a separate algorithm may be used;

for a description of the latest algorithms available in ORIGEN, see the most current SCALE manual [76].

The point depletion algorithm in MPACT is illustrated in Sections 10.1 and 10.2. It is noted here that the time

discretization scheme that is used is explicit.
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Figure 10.1. Point depletion algorithm (1 of 2).
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Figure 10.2. Point depletion algorithm (2 of 2).
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10.2 Coupling of the Neutron Transport and Nuclide Transmutation Equa-

tions

In MPACT, the flat source regions of the fuel pin are azimuthally and radially dependent. These regions have the finest

discretization of the scalar flux. Currently, the depletable region of the pin is only radially dependent. The difference

in these spatial regions is illustrated in Figure 10.3, where the right-hand side of the figure shows the flat source or flat

scalar flux region, and the left-hand side shows a uniform cross section or depletion region. This approach of mapping

the flux and cross section regions has been shown to be adequate unless there are very strong local asymmetries. The

capability to treat azimuthally varying depletable regions is a simple modification, but it will considerably increase

memory requirements.

Flat Scalar Flux

Region (grey)

Uniform Cross Section

Region (grey)

Figure 10.3. Depletion zones in MPACT pin cell.

10.2.1 Predictor-Corrector

In each step of a depletion calculation, the flux is assumed to be constant with time. There are several techniques

for incorporating the time dependence of the flux into the depletion calculation. This is typically accomplished by

dividing the depletion problem into a series of time steps and periodically performing transport calculations. However,

because the time dependence of the flux has nonlinear feedback from the change in the fuel composition, the optimum

depletion step size is often not known a priori, and to maintain an accurate solution, the time steps are often very

small. This leads to longer computation time, which is undesirable. Therefore, to reduce computation time and allow

for longer burnup step sizes, MPACT adopts two commonly used techniques: (i) the predictor-corrector and (ii) sub-

step methods. The predictor-corrector method works by computing a predicted nuclide concentration for a given time

step and then a corrected nuclide concentration. The basic predictor-corrector approach is illustrated by Figure 10.4
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and given in Eq. (10.15).

  P

tt

P

tX 212  

t1
t2

Predictor

Corrector

1t

1tX

1t

P

t2

     
2

2212
222

P

t

C

tt

P

t
t

P

t

C

t

XX
XX







22 ttX 

Figure 10.4. Illustration of depletion predictor-corrector.

Xt2 =
XP

t2(φt1,σt1)+XC
t2(φ

P
t2,σ

P
t2)

2
. (10.15)

The predictor step includes the typical depletion calculation to obtain the particle number densities, Xt2(φt1,σt1), at

burnup t2 by using the 1-group flux and cross sections at the time of burnup t1. At this point the new predicted 1-

group flux (φ p
t2) and cross sections (σ p

t2) are obtained through a transport calculation using the predicted concentration,

XP
t2(φt1,σt1). Next, the corrector step performs a depletion calculation using the new 1-group flux (φ p

t2) and cross

section (σ p
t2), and the new corrected particle number densities, XC

t2(φ
P
t2,σ

P
t2), are obtained. The final particle number

densities for t2 are then taken to be the arithmetic mean of the predicted and corrected concentrations. Once Xt2 is

obtained, then a transport calculation is performed to obtain the steady-state flux distribution at t2, (φt2).

10.2.2 Substep Method

The substep method is applied to perform multiple depletion calculations between transport calculations. This has the

effect of reducing the numerical error in the evaluation of the matrix exponential. Furthermore, since the depletion

calculation typically takes less time than the transport calculation, this will often save computational time. Mathe-

matically, this results in the normalization factor of the flux, f , becoming time-dependent, but the eigenvector, which

represents the spatial flux distribution is still assumed to be constant between transport calculations. For M substeps

the mth flux, representing the flux at time t1 +m∆t/M, used by the depletion calculations, is:

φm = φt1 fm−1 where fm−1 =
Pt1

∑ j ∑i X i, j
m−1κσ

f ,i, j
t1 φ

j
t1

, (10.16)

where Pt1 is the total power at t1, φ
j

t1 and κσ
f ,i, j

t1 are the eigenvector for region j ,and the energy per fission multiplied by

the microscopic fission cross section of region j and nuclide i at t1, respectively, and X i, j
m−1 is the nuclide concentration

of sub-step m−1. The substep method allows for even coarser burnup steps without a loss in accuracy.
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10.2.3 Depletion Time-stepping algorithm

An overview of the depletion algorithm in MPACT is depicted in Figure 10.5. This algorithm is the same in MPACT

regardless of the point depletion solution methodology being used.
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Figure 10.5. MPACT depletion algorithm.
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11. Transient Methods

11.1 Transient Methods within the 2D/1D Framework

This chapter describes the methods for extending the 2D-1D steady-state solution to the time-dependent problem.

The derivation of the MPACT transient solution method begins with the formulation of the 3D transient fixed source

problem (TFSP), that involves the time discretization and the precursor integration technique. The chapter then gives

the 2D-1D discretization of the TFSP, first for 2D MOC, then for the 1D axial solver. This follows closely with

chapters 2, 4, 5, and 6 where the discretizations for energy, space, and angle are essentially the same. Following

this, the Transient Multilevel (TML) method is derived in detail. Most of this description originates from Zhu et al.

[27], [28]. Because thermal-hydraulic feedback is an essential part of the transient analysis, a discusssion of the TML

method with feedback is also included at the end.

11.1.1 3D Time-dependent Neutron Transport Equations

The time-dependent multigroup neutron transport equation is given in Eq. (11.1), and the precursor equation is given

in Eq. (11.2).

1
vg

∂ψg(r,ΩΩΩ, t)
∂ t

=−ΩΩΩ ·∇ψg(r,ΩΩΩ, t)−Σt,g(r, t)ψg(r,ΩΩΩ, t)

+
G

∑
g′=1

4π∫
0

Σs,g′→g(r,ΩΩΩ ·ΩΩΩ′, t)ψg′(r,ΩΩΩ′, t)dΩ
′

+
1

4π

(
χp,g(r, t)(1−β (r, t))SF(r, t)+χd,g(r, t)Sd(r, t)

)
, (11.1)

∂Cτ(r, t)
∂ t

= βτ(r, t)SF(r, t)−λτCτ(r, t) ,τ = 1,2, ...,6 (11.2)

where ψg and Σx,g have the usual definitions. The subscript τ is the delayed group index, Cτ is the delayed neutron

precursor concentration, βτ is the delayed neutron fraction, λτ is the delayed group decay constant, and vg is the group

velocity defined from its continuous form to the multi-group form by:

vg =

Eg−1∫
Eg

dE

Eg−1∫
Eg

1
v(E)dE

. (11.3)
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χp and χd are the prompt and delayed fission spectrums, respectively SF and Sd are the total fission source and the

delayed neutron source defined as:

SF (r, t) =
1

keff

G

∑
g′=1

νΣ f ,g′(r, t)φg′(r, t), (11.4)

Sd(r, t) =
6

∑
τ=1

λτCτ(r, t). (11.5)

In the above equations, the SF value is adjusted by the eigenvalue determined in the steady-state calculation and

is used to initialize the transient. This is necessary to ensure a null reactivity from the initial conditions. Various

time-discretization methods may be used for solving the time-dependent neutron transport equation, including the

θ -method, the backward differentiation formula (BDF) method [30], etc. A detailed discussion of these methods can

be found in [45]. The most commonly used second order θ -method requires the explicit calculation and storage of the

RHS terms of Eq. (11.1). However, storage of the angularly dependent terms would be a considerable computational

expense for practical problems. Therefore, the more computationally efficient and numerically stable backward Euler

method is used for solving the time-dependent transport equation.

For a given time step size at time step n, the LHS of Eq. (11.1) can be discretized using the backward Euler method as:

ψn
g (r,ΩΩΩ)−ψn−1

g (r,ΩΩΩ)

vg∆tn
= Rn

g(r,ΩΩΩ), (11.6)

with Rn
g indicating all right-hand side terms of Eq. (11.1) at time step n.

Because of the practical difficulty for explicitly solving the angularly dependent time-derivative term, the isotropic

approximation is used as defined in Eq. (11.7). This approximation assumes that the derivative of angular flux with

respect to time is isotropic. It has been shown to be sufficiently accurate [86],[45], and is widely used in current

state-of-art time-dependent transport solver codes [32],[77], [26].

ψn
g (r,ΩΩΩ)−ψn−1

g (r,ΩΩΩ)

vg∆tn
≈

φ n
g (r,ΩΩΩ)−φ n−1

g (r,ΩΩΩ)

4πvg∆tn
. (11.7)

11.1.2 Precursor Integration and Formulation of the Transient Fixed Source Problem

The transport equation, Eq. (11.1), is coupled to the precursor equations Eq. (11.2). To avoid the complexity of solving

this coupled set of time-dependent partial differential equations, the precursor equations are first integrated analytically

and then substituted into Eq. (11.1). The rest of this section describes this procedure.
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To allow for the integration of Eq. (11.1) the second-order approximation for the fission source is assumed:

βτ(r, t)SF(r, t)≈β
n(r)Sn

F(r)
t̃2 + t̃γ∆tn

(1+ γ)(∆tn)2

+β
n−1(r)Sn−1

F (r)
(

1− t̃2 + t̃2(γ−1)∆tn
γ(∆tn)2

)
+β

n−2(r)Sn−2
F (r)

t̃2 + t̃∆tn
(1+ γ)γ(∆tn)2 , (11.8)

where

t̃ = t− tn−1,

γ =
∆tn−1

∆tn
.

Effectively this assumption states that the fission source will vary quadratically in a time step. That quadratic shape

may be reconstructed using information from previous time steps. For the first two time steps, the initial condition is

used as the previous steps fission source.

Applying an integrating factor to Eq. (11.2) gives

eλτ t ∂Cτ(r, t)
∂ t

+λτ eλτ tCτ(r, t) = βτ(r, t)SF(r, t)eλτ t , (11.9)

and substituting by Eq. (11.8) into Eq. (11.9) one can perform the integration analytically over time step n. After some

algebra the solution for the integrated precursor concentrations is obtained as a function of Sn
F .

Cn
τ (r) = Ω̃

0
τ(λ̃

n
τ )C

n−1
τ (r)+

1
λ n

τ(
β

n(r)Sn
F(r)Ω̃

n
τ(λ̃

n
τ )+β

n−1(r)Sn−1
F (r)Ω̃n−1

τ (λ̃ n
τ )+β

n−2(r)Sn−2
F (r)Ω̃n−2

τ (λ̃ n
τ )
)
, (11.10)

where the following expressions have been used to simplify Eq. (11.10)

λ̃
n
τ = λ

n
τ ∆tn, (11.11a)

κ0(x) = 1− e−x, (11.11b)

κ1(x) = 1− κ0(x)
x

, (11.11c)

κ2(x) = 1− 2κ1(x)
x

, (11.11d)

Ω̃
0
τ(λ̃

n
τ ) = e−λ̃ n

τ , (11.11e)

Ω̃
n
τ(λ̃

n
τ ) =

κ2(λ̃
n
τ )+ γκ1(λ̃

n
τ )

1+ γ
, (11.11f)

Ω
n−1
τ (λ̃ n

τ ) = κ0(λ̃
n
τ )−

κ2(λ̃
n
τ )+(γ−1)κ1(λ̃

n
τ )

γ
, (11.11g)

Ω
n−2
τ (λ̃ n

τ ) =
κ2(λ̃

n
τ )−κ1(λ̃

n
τ )

γ(1+ γ)
. (11.11h)
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Next the solution of the precursor equations obtained as Eq. (11.10) is substituted into Eq. (11.5) yielding:

Sn
d(r) = Ω̃

n(r)Sn
F(r)+ S̃n−1

d (r), (11.12)

where

Ω̃
n(r) =

6

∑
τ=1

βτ(r)Ω̃n
τ(λ̃

n
τ ), (11.13)

S̃n
d(r) =

6

∑
τ=1

λτ Ω̃
0
τ(λ̃

n
τ )C

n−1
τ (r)+Sn−1

F

6

∑
τ=1

β
n−1
τ (r)Ω̃n−1

τ (λ̃ n
τ )+Sn−2

F (r)
6

∑
τ=1

β
n−2
τ (r)Ω̃n−2

τ (λ̃ n
τ ). (11.14)

By inserting the delayed neutron source terms of Eqs. (11.14) into Eq. (11.1), utilzing the time discretization of

Eq. (11.7) and explicitly writing out Rn
g(r,ΩΩΩ) of Eq. (11.6) the final form of the discretized transport transient fixed

source problem may be written as:

ΩΩΩ∇ψ
n
g (r,ΩΩΩ)+Σ

n
t ψ

n
g (r,ΩΩΩ) =

G

∑
g′=1

4π∫
0

Σ
n
s,g′→g(r,ΩΩΩ ·ΩΩΩ

′)ψn
g′(r,ΩΩΩ

′)dΩΩΩ
′

+
1

4π

(
χ

n
g (r)S

n
F(r)+Sn

tr,g(r)
)
, (11.15)

where χn
g (r) is defined as

χ
n
g (r) = χ

n
p,g(r)(1−β (r))+χ

n
d,g(r)β (r), (11.16)

and the transient source given in Eq. (11.15) is defined as:

Sn
tr,g(r) = An

g(r)φ
n
g +Bn

g(r)S
n
F +Cn

g(r). (11.17)

In the previous equation, An
g(r) and Bn

g(r) are the flux and fission source dependent coefficients,respectively, and Cn
g(r)

is a constant coefficient depending on only previous time-step quantities. These terms are given as:

An
g(r) =−

1
vg∆tn

, (11.18a)

Bn
g(r) = χ

n
d,g(r)(Ω̃

n(r)−β (r)), (11.18b)

Cn
g(r) = χ

n
d,g(r)S̃

n−1
d (r)+

φ n−1
g (r)
vg∆tn

. (11.18c)

The form of Eq. (11.15) should be familiar, it is written in such a way that it may readily solved any standard steady-

state neutron transport solver after discretizing over space, angle. The 2D MOC solution of Eq. (11.15) is discussed

next in Section 11.1.3.

11.1.3 2D MOC Solution of the Transient Fixed Source Problem

The discretized steady-state trasnport equation from Eq (5.3) from Chapter 5 is reproduced below, where the subscript

k has been dropped for simplicity, and the index for the time step, n has been added.

Ωx,m
∂ψn

m,g(x,y)
∂x

+Ωy,m
∂ψn

m,g(x,y)
∂y

+Σ
n
t,g(x,y)ψ

n
m,g(x,y) = qn

m,g(x,y). (11.19)
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Eq. (11.15) can be written in such a form by defining qn
m,g as:

qn
m,g(x,y) =

G

∑
g′=1

M

∑
m′=1

Σ
n
s,g′→g(x,y,ΩΩΩm′ ·ΩΩΩm)ψ

n
m′,g′(x,y)wm′

+
1

4π

[
χ

n
g (x,y)S

n
F(x,y)+An

g(x,y)φ
n
g +Bn

g(x,y)S
n
F +Cn

g(x,y)
]

− 1
4π∆z

[
Jn

z,T,g(x,y)− Jn
z,B,g(x,y)

]
. (11.20)

In this formulation of the 2D MOC problem note that all the coefficients in Eq. (11.20) are averaged over the axial

direction z.

An
g(x,y) =

zT∫
zB

An
g(x,y,z)φ

n
g,m(x,y,z)dz

zT∫
zB

φ n
g,m(x,y,z)dz

, (11.21a)

Bn
g(x,y) =

zT∫
zB

Bn
g(x,y,z)S

n
F(x,y,z)dz

zT∫
zB

Sn
F(x,y,z)dz

, (11.21b)

Cn
g(x,y) =

zT∫
zB

Cn
g(x,y,z)dz

zT∫
zB

dz
. (11.21c)

Since the MOC solution of Eq (5.3) in Chapter 5 is done in terms of the variable qm,g the steps for obtaining the MOC

solution of Eq. (11.19) are identical.

11.1.4 Transient 1D Nodal Method

The transient 1D equations of the 2D-1D method are formulated and solved by essentially the same procedure as

section 11.1.3. The steady-state 1D equation Eq. (4.9) from Chapter 4 is rewritten below.

µ
∂ψ̂

∂ z
(r,µ)+Σtψ̂(r,µ) =

Σs

2

∫ 1

−1
ψ̂(r,µ ′)dµ

′+
νΣ f

2keff

∫ 1

−1
ψ̂(r,µ ′)dµ

′− 1
2

[
∂Jx

∂x
(r)+

∂Jy

∂y
(r)
]
. (11.22)

The discretizations yielding Eq. (11.15) are still amenable to the 2D-1D procedure, and thus the transient form of

Eq. (11.22) is simply:

µ
∂ψ̂n

∂ z
(r,µ)+Σ

n
t ψ̂

n(r,µ) =
Σn

s

2

∫ 1

−1
ψ̂

n(r,µ ′)dµ
′+

νΣn
f

2keff

∫ 1

−1
ψ̂

n(r,µ ′)dµ
′− 1

2

[
∂Jn

x

∂x
(r)+

∂Jn
y

∂y
(r)
]
+Sn

t r(r).

(11.23)

As noted in Chapter 6 the solution of equations of the form of Eq. (11.23) can be performed using either a transport

method or a diffusion method. Either the NEM (section 6.3) or NEM-P3 (section 6.5) kernel can be used for transient

calculations in MPACT. These kernels are modified to include the transient source of Eq. (11.17). In these kernels the
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same basis polynomials used to expand the steady-state components of the source in the axial direction are used to

expand the transient source.

Sn
tr,g,m(ξ ) =

2

∑
k=0

Str,kPk(ξ ), (11.24)

where ξ denotes the normalized spatial variable and Pk(ξ ) are basis polynomials.

The coefficients of the transient source term are calculated the same way as the transverse leakage term. This forces

the averaged transient source in Eq. (11.24) to be identical to the transient source at three adjacent nodes.

11.1.5 CMFD Transient Fixed Source Problem

Several methods exist for solving the CMFD TFSP. These include a multi-group sweeping (MGS) CMFD, and a multi-

group matrix (MGM) CMFD. The MGS CMFD method solves the CMFD equations group by group, and requires

multiple iterations over energy to converge the energy-dependent source, especially for transient problems with a large

power change. The MGM CMFD formulates one single matrix for the whole multi-group 3D CMFD problem and

uses PETSc [6] to solve the linear system. The advantage of the MGM CMFD is that the solution of the TFSP is

obtained by solving the MGM linear system, rather than by solving multiple linear systems as is necessary in the

MGS formulation. The MGM CMFD is used in this work, since for all problems analyzed thus far, the MGM CMFD

performs much more efficiently than MGS CMFD.

The derivation of the CMFD operator is essentially the same procedure for transient as it is for steady-state. The

discretized steady-state CMFD operator given in Eq. (7.2) is rewritten below:

∑
s
−D̃g, j,s (φg, j−φg, j,s)+ D̂g, j,s (φg, j +φg, j,s)δA j,s

+Σt,g, jφg, jVj =

[
G

∑
g′=1

(
Σs0,g′→g, j +

χg

keff
νΣ f ,g′, j

)
φg′, j

]
Vj, (11.25)

where D̃ and D̂ have the usual definitions from Eq. (7.4) and Eq. (7.7). δA j,s in Eq. (11.25) and Eq. (11.26) is the

surface area of face s of coarse cell j.

With the addition of the transient source the resulting equation is:

∑
s
−D̃n

g, j,s
(
φ

n
g, j−φ

n
g, j,s
)
+ D̂n

g, j,s
(
φ

n
g, j +φ

n
g, j,s
)

δA j,s

+Σ
n
t,g, jφ

n
g, jVj =

[
G

∑
g′=1

(
Σ

n
s0,g′→g, j +

χn
g

keff
νΣ

n
f ,g′, j

)
φ

n
g′, j

]
Vj +Sn

tr,g, jVj. (11.26)

Instead of homogenizing the fine mesh transient source term (Sn
tr,g in Eq. (11.26)), the transient source coefficients A,
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B, and C are homogenized using the following equations:

An
g, j =

∑
i∈ j

An
g,iφ

n
g,iVi

∑
i∈ j

φ n
g,iVi

, (11.27a)

Bn
g, j =

∑
i∈ j

Bn
g,iχ

n
g SF,g,iVi

∑
i∈ j

χn
g SF,g,iVi

, (11.27b)

Cn
g, j =

∑
i∈ j

Cn
g,iVi

∑
i∈ j

Vi
. (11.27c)

The solution of the aforementioned equations is next described in subsections 11.1.5.1 and 11.1.5.2. To facilicate the

notation in these sections we now introduce the following operator notation.

Removal term: M = D+ΣΣΣttt (11.28a)

Scattering: S = ΣΣΣsss (11.28b)

Fission source: F =
χχχνννΣΣΣ fff

keff
(11.28c)

Transient source: Str = Aφ +BFφ +C (11.28d)

Here ΣΣΣttt is a diagonal matrix, and D is a sparse matrix containing the D̃ and D̂ terms.

11.1.5.1 MGS CMFD Formulation

The iteration scheme for multi-group sweeping formulates the operators of Eq. (11.28) for all coarse mesh cells and

a single group g and iterates through these linear systems in a Gauss-Seidel fashion. As a result, the CMFD transient

source can be updated by the new CMFD flux and fission source as:

(Mg−Sg)φ
`+1
g = Fgφ

`
g +S`

tr,g, (11.29a)

S`+1
tr,g = Agφ

`+1
g +BgFφ

`+1
g +Cg. (11.29b)

The overall solution algorithm is shown in Figure 11.1. The MGS CMFD iteration technique is similar to the traditional

source iteration technique. The motivation for going with this type of iteration is to minimize storage requirements for

linear system solved in Eq. (11.29) and also to keep the condition number from getting too large. One disadvantage

of the MGS method is that it requires multiple iterations on the CMFD linear systems to converge before each MOC

sweep, and the number of iterations can be very large for transient problems with rapid changes in the power since the

right-hand side (fission source and transient source) can change considerably during each transient step.
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11.1.5.2 MGM CMFD Formulation

As an alternative to the MGS CMFD, the MGM CMFD method was developed. This method formulates the transient

fixed source problem for the full space-energy linear system as:

(M−S−F−A−BF)φ = C. (11.30)

As noted previously, the transient calculation does not require updating the eigenvalue during a transient step. There-

fore, the CMFD flux-dependent source (including the transient source and fission source) on the RHS in the transient

matrix can be moved to the left-hand side. In this approach no source iterations are required. Once the linear system

is solved the flux solution is obtained. Eq. (11.30) is a standard linear system and can be solved using any matrix

inversion method. Given the size and sparsity of the matrix, the GMRES solver with a block Jacobi preconditioner

from PETSc that is used for the steady solution of the CMFD linear system is also used for the transient fixed source

problem.

Figure 11.1. Flow charts for MGS (left) and MGM (right) CMFD.
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11.1.6 Iteration Strategy

The overall iteration scheme of the MPACT transient algorithm is shown in Figure 11.2. The 2D MOC transport prob-

lem or the 2D MOC/1D NEM problem are iteratively solved with 2D or 3D CMFD acceleration until the convergence

criteria are satisfied.

Figure 11.2. 2D-1D transient iteration scheme.

11.2 Transient Multilevel (TML) Method

The design and implementation of the 2D/1D scheme and the MGM CMFD acceleration method considerably reduce

the computational burden for full core transient modeling with pin-resolved detail. However, the required CPU effort

is still too large for practical applications. This chapter discusses the innovative methods used to further reduce the

computational time by increasing the size of the time step required for the time-dependent MOC method. A transient

multilevel (TML) method based on the predictor-corrector quasi-static method (PCQM) was developed in which the

first level involves the 3D transport with CMFD acceleration. The second level is a pure 3D CMFD TFSP. Finally the

coarsest, third level makes use of the exact point kinetic equations (EPKE). The essential idea of the method is to take

advantage of the differences in the time variation of the angular, spatial, and magnitude components of the flux in the

reactor after a reactivity change.
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This chapter introduces the adjoint flux necessary to couple the spatial (CMFD) and amplitude (EPKE) flux levels,

and then provides the details of the derivation and implementation of the TML method.

11.2.1 CMFD Adjoint Flux

The fundamental mode adjoint neutron flux has always been useful in reactor physics for the treatment of perturbations

of eigenvalue problems. The adjoint flux provides a convenient method to estimate the perturbed eigenvalue without

exactly solving the often very complicated perturbed systems [72]. One of the important perturbations for practical

neutron transport applications is the insertion of reactivity, where the change of material composition, temperature,

etc., will either increase or decrease the eigenvalue of the system.

The MOC-based adjoint flux calculation was previously implemented in MPACT to generate the asymptotic diffusion

coefficient [88]. Because of the computational complexity of the MOC-based adjoint flux, the CMFD-based adjoint

flux calculation capability was also designed and implemented in MPACT [25] to accurately approximate the MOC-

based adjoint flux for practical reactor core applications. The detailed comparison of the MOC and CMFD adjoint

flux can be found in [25]. As described in Ott and Neuhold [72], the adjoint operator is defined by the scalar product

Eq. (11.31) to hold for all allowed ψ and φ of the functional space, where H∗ is the adjoint operator of H and <> is

the operation to integrate over all space:

< ΨΨΨ,HΦΦΦ >=< H∗ΨΨΨ,ΦΦΦ >=< ΦΦΦ,H∗ΨΨΨ > . (11.31)

The steady-state multigroup CMFD equation expressed in operator notation is:

(M−S)φ =
1

keff
Fφ . (11.32)

As shown in Ott and Neuhold [72], the adjoint to Eq. (11.32) that satisfies Eq. (11.31) can be obtained by solving the

adjoint equation expressed as:

(M−S)∗φ ∗ =
1

k∗eff
F∗φ ∗, (11.33)

where the fundamental mode forward (keff) and adjoint (k∗eff) eigenvalues are identical.

The matrix (M−S) is explicitly constructed and stored during the forward CMFD solve in MPACT, and the transpose

operation is simply performed by the intrinsic transpose subroutine provided by PETSc [6]. The fission source operator

F is not constructed explicitly, but rather can be written in matrix form in Eq. (11.34), and the transpose operation can

be performed by simply switching the fission spectrum and fission cross section vector as shown in Eq. (11.35):

F = χνΣΣΣf, (11.34)

F∗ = νΣΣΣ
∗
f χ
∗. (11.35)
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Equation (11.33) can also be solved using the power iteration, which is the same procedure to solve the forward CMFD

equation. Since the matrices (M−S) and F are fixed for the given problem, there is no need to update them during the

power iteration. In addition, the majority of the RHS term can be shifted to the LHS since the eigenvalue is known.

11.2.2 Point Kinetics Equations

The point kinetics equations (PKEs) are derived by integrating the equations defined in Eq. (11.1) and Eq. (11.2). This

procedure first integrates over angle, ΩΩΩ, then uses the integration defined in Eq. (11.31) to integrate over space and

energy. The detailed derivation is provided in Dulla et al. [35, 23]. The result of this procedure yields the EPKE’s as:

d p(t)
dt

=
ρ(t)−β e f f (t)

Λ(t)
p(t)+

1
Λ(0) ∑

τ

λτ(t)ζτ(t), (11.36)

dζτ(t)
dt

=
Λ(0)
Λ(t)

β
e f f
τ (t)p(t)−λ

PK
τ (t)ζτ(t) , τ = 1,2, ...,6, (11.37)

where p(t) represents the core wise amplitude function, and ζτ(t) is the adjoint flux weighted precursor number density

for delayed group τ .

The reactivity, delayed neutron fractions, neutron generation time, and delayed neutron constants are defined in

Eqs. (11.38) through (11.42):

ρ(t) =
< φ ∗(r,E)(F−M)φ(r,E, t)>

F(t)
, (11.38)

β
e f f
τ (t) =

< φ ∗(r,E)χd,τ(r,E)βτ(r)SF(r, t)>
F(t)

, τ = 1,2, ...,6, (11.39)

β
e f f (t) = ∑

τ

β
e f f
τ (t), (11.40)

Λ(t) =
< φ ∗(r,E) 1

v(E)φ(r,E, t)>
F(t)

, (11.41)

λ
PK
τ (t) =

< φ ∗(r,E)λτ(r, t)χd,τ(r,E)Cτ(r, t)>
< φ ∗(r,E)χd,τ(r,E)Cτ(r, t)>

, (11.42)

where F(t) =< φ ∗(r,E)χ(r,E)SF(r, t)>, and the matrix operators are the same as those used in Eq. (11.28).

Eqs. (11.36) and (11.37) are solved using the same discretization applied to the transport transient equation, including

implicit Euler discretization for the d p(t)/dt term and a second order approximation of the amplitude function during

a time step n to obtain an integrated form of Eq. (11.37). Therefore the EPKE solution of Eq. (11.37) corresponding

to Eq. (11.10) is:

ζ
n
τ = Ω

PK,0
τ ζ

n−1
τ +

Λ(0)
λ PK

τ

[
pn β

e f f ,n
τ

Λn Ω̃
PK,n−1
τ + pn−1

β
e f f ,n−1
τ

Λn−1 Ω̃
PK,n−1
τ + pn−2

β
e f f ,n−2
τ

Λn−2 Ω̃
PK,n−2
τ

]
, (11.43)

where Ω̃
PK,i
τ denotes the corresponding Ω̃i

τ from Eq. (11.11), except they are evaluated with the new effective delayed

constant defined in Eq. (11.42) rather than region-wise delayed constants.
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By applying the implicit Euler discretization to d p(t)/dt and then inserting Eq. (11.43) into Eq. (11.36), the current

step power can be obtained, and the precursor equation is then calculated by inserting the power back into Eq. (11.43).

11.2.3 Transient Multilevel Method

The essential idea of the transient multilevel (TML) method is to capture the flux change in space, energy, and angle

in a time domain consistent with its physical variation during a transient. As illustrated in Figure 11.3, the time step of

the 3D transport transient solver is coarse since the time variation of the angular sub-pin flux distribution is generally

slower than the changes in the spatial shape and amplitude of the flux. The 3D CMFD transient solver uses the

3D whole core matrix in the intermediate time step to maintain the accuracy of the pin-wise scalar flux distribution.

Finally, the time step of the EPKE is the smallest in order to capture the time variation of the flux magnitude, which

is driven by the prompt neutron generation time. In this manner, the three-level transient solver maintains a consistent

accuracy, while minimizing the overall computational expense for the transient simulation of a large core problem. In

the following sections, the methods developed use the PCQM scheme to couple 3D transport to the 3D CMFD and the

3D CMFD to the EPKE.

Figure 11.3. Illustration of TML scheme

11.2.3.1 3D Transport and CMFD Coupling

The coupling of the 3D-transport and 3D-CMFD equations begins by factoring the neutron angular flux into an ampli-

tude and shape function:

ψg(r,ΩΩΩ, t) = Pg(r, t)Φg(r,ΩΩΩ, t), (11.44)

where Pg(r, t) is the amplitude function and Φg(r,ΩΩΩ, t) is the shape function, representing the angular and fine mesh

flux distribution. If Pg(r, t) is spatially flat for a coarse mesh j, Eq. (11.44) can be expressed as:

ψg(r,ΩΩΩ, t) = Pg, j(t)Φg(r,ΩΩΩ, t) , r ∈ j. (11.45)

The amplitude and shape functions defined in Eq. (11.45) are arbitrary, and thus a constraint for the shape function is

introduced which requires the integral of the shape function in each CMFD cell (r ∈ j) domain to be unity:

1∫
r∈ j

dV

∫
r∈ j

∫
ΩΩΩ

Φg(r,ΩΩΩ, t)dΩΩΩ,dV = 1. (11.46)
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If Eq. (11.45) is integrated over space and angle in the CMFD cell domain and the constraint in Eq. (11.46) is applied,

the amplitude function in each CMFD cell is identical to the corresponding CMFD scalar flux:

1
Vj

∫
r∈ j

∫
ΩΩΩ

ψg(r,ΩΩΩ, t)dΩΩΩdV =
1
Vj

Pj,g(t)
∫

r∈ j

∫
ΩΩΩ

Φg(r,ΩΩΩ, t)dΩΩΩdV = Pg, j(t). (11.47)

As a result, the shape function in each CMFD cell can be easily obtained by Eq. (11.48).

Φg(r,ΩΩΩ, t) =
ψg(r,ΩΩΩ, t)

φg, j(t)
, (11.48)

where φg, j(t) is the scalar flux in the coarse mesh.

If Eq. (11.1) is integrated over angle and space in each CMFD cell j, and by using the constraint in Eq. (11.46) again,

the left hand side reduces to Eq. (11.49).

1
Vj

∫
r∈ j

∫
ΩΩΩ

∂ψg(r,ΩΩΩ, t)
vg∂ t

dΩΩΩdV

=
1

Vjvg

∫
r∈ j

∫
ΩΩΩ

(
Pg, j(t)

∂Φg(r,ΩΩΩ, t)
∂ t

+Φg(r,ΩΩΩ, t)
∂Pg, j(t)

∂ t

)
dΩΩΩdV

=
1

Vjvg
Pg, j(t)

∂

∂ t

∫
r∈ j

∫
ΩΩΩ

Φg(r,ΩΩΩ, t)+
1

Vjvg)

∂Pi(E, t)
∂ t

∫
r∈ j

∫
ΩΩΩ

Φg(r,ΩΩΩ, t)dΩΩΩdV

=
1
vg

∂Pg, j(t)
∂ t

. (11.49)

The right hand side would be the same as Eq. (7.1)

The above derivation indicates that the CMFD amplitude function can be evaluated using exactly the same diffusion

equation as in Eq. (11.26), where the coupling coefficients are generated during the transport/CMFD solution step as

previously defined. This similar approach for solving the coarse mesh flux amplitude is referred to as the TCMFD

method [27].

The PCQM algorithm for transport/CMFD level is thus:

• Step 1: Evaluate the steady state flux distribution based on the 3D transport solver.

• Step 2: Solve the transport TFSP for coarse time step dtn given by Eq. (11.15) and accelerated by CMFD.

– The flux distribution ψn
g (r,ΩΩΩ) in this step is predicted, and it is assumed the shape function is accurate in

the coarse time step, but the amplitude function has some inaccuracy and will be corrected using fine time

steps.

– The shape function is generated by using the predicted CMFD scalar flux defined in Eq. (11.48), and the

CMFD coefficients at the end of the time step are calculated.

• Step 3: Linearly interpolate the CMFD coefficients between tn−1 and tn, build the CMFD transient source based

on Eq. (11.17), and solve the CMFD TFSP using the dtn,CMFD = dtn/N time step, where N is the number of

CMFD steps per transport step.
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• Step 4: Multiply the CMFD scalar flux by the shape function to determine the corrected transport angular

dependent flux distribution:

ψ
C,n
g (r,ΩΩΩ) = ψ

P,n
g (r,ΩΩΩ)

φ
C,n
g, j

φ
P,n
g, j

r ∈ j. (11.50)

• Step 5: Use the corrected transport flux distribution to solve the precursor equations in Eq. (11.10).

The same procedure is used to solve all transport time steps using steps 2–5.

11.2.3.2 3D CMFD and EPKE Coupling

Similar to the coupling of the transport/CMFD level, the CMFD flux is factorized as follows:

φg, j(t) = p(t)ϕg, j(t). (11.51)

where φg, j is the CMFD flux in cell j for group g, and p(t) and ϕg, j(t) represent the whole core amplitude and coarse

mesh cell dependent shape functions, respectively. The constraint for this separation is to maintain the integration of

the shape function to be a constant K:

K = ∑
j
∑
g

φ
∗
g, j

1
vg

ϕg, j(0) = ∑
j
∑
g

φ
∗
g, j

1
vg

ϕg, j(t). (11.52)

With the constraint in Eq. (11.52), the amplitude can calculated as in Eq. (11.53), and the corresponding shape function

is given by Eq. (11.54).

p(t) =
∑
j

∑
g

φ ∗g, j
1
vg

ϕg, j(t)

K
, (11.53)

ϕg, j(t) =
φg, j(t)

∑
j

∑
g

φ ∗g, j
1
vg

ϕg, j(t)
. (11.54)

The amplitude function defined in Eq. (11.51) is obtained from the EPKE and is defined in Eq. (11.36) and Eq. (11.37).

The detailed derivation can be found in Cho (2005) [32].

The PCQM algorithm for CMFD/EPKE level is then:

• Step 1: Evaluate the steady-state CMFD-based adjoint flux φ ∗g, j [25] in addition to the forward steady-state flux

distribution.

• Step 2: Solve the CMFD TFSP for CMFD time step dtn,CMFD using Eq. (11.26).

– The predicted CMFD scalar flux distribution φ P
g, j(tn) is computed, and it is assumed that the shape function

is accurate in the coarse time step, but the amplitude function will be corrected using a finer time step.

– The shape function ϕg, j(tn) is generated using Eq. (11.54). The point kinetics parameters used for solving

the EPKE are calculated and stored for the end of the time step.
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• Step 3: Linearly interpolate the point kinetics parameters between tn−1,CMFD and tn,CMFD, and solve the EPKE

using dtn,EPKE = dtn,CMFD/N time step, where N is the number of EPKE step per CMFD step.

• Step 4: The final CMFD scalar flux is corrected by the p(tn):

φ
C
g, j(tn) = φ

P
g, j(tn)

p(tn)K

∑
j

∑
g

φ ∗g, j
1
vg

φ P
g, j(tn)

. (11.55)

• Step 5: The corrected CMFD scalar flux is used to solve the precursor equation with Eq. (11.43).

The same procedure is used to solve all CMFD time steps using steps 2–5.

11.2.4 Iteration Scheme with TH Feedback

The TH feedback was applied to the neutronic solver in MPACT [29] using a simplified internal TH module. This

simplified model includes 1D radial heat conduction and 1D axial mass/energy equations of conservation for convec-

tion. This model is primarily simplified in the convection aspect. Although several physical phenomena related to the

conduction such as creep, swelling, thermal expansion, and the like are not treated explicitly. This model provides

the pin-wise radially dependent Doppler feedback for the channel flow with the constant pressure assumption. In

the steady-state condition, the TH/neutronics coupling is first fully converged, and then the transient TH/neutronics

solvers are used to march through time using an explicit coupling. One note is that the due to the explicit TH/neutron-

ics coupling and sub-pin Doppler feedback, special attention was required with the TML couplings. Additionally, no

simplified transient “convection” model exists, so the adiabatic boundary condition is assumed at the clad surface.

The TH feedback may also be provided by COBRA-TF [75] which does include more sophisticated models for con-

vection and fuel performance.

11.2.5 First Level TH Coupling for 3D Transport/3D CMFD

In each transport time step, the transport transient equation is solved first, and then the CMFD transient equation

is solved to correct the pin-wise scalar flux. Due to the subpin-dependent Doppler temperature feedback, the TH

calculation is performed in each transport time step; that means, at present TML is solely a neutronics accelerator.

As shown in Figure 11.4, steps 0–2 represent the transport time steps, and each transport step is then subdivided into

several fine CMFD time steps. Step 2 is used when the material is linearly changed from m0 to m5 (time evolves from

t0 to t5).

To interpolate the CMFD matrix during the CMFD corrector step, two sets of CMFD macroscopic cross sections for

Σn and Σn+1 are required, one each at the beginning and end of a transport time step.
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Figure 11.4. Illustration of first level TH coupling for TML.

With explicit coupling, the TH condition is updated at the end of each transport step is used for the next transport time

step. For example, T H1 calculated at the end of step 1 is used as the TH condition for the whole step 2, while T H2 is

used for further time steps. As a result, the two sets of cross sections are evaluated as:

Σ
n(T H1,m0,Ψ(T H1,m0, t0)), (11.56)

Σ
n+1(T H1,m5,Ψ(T H1,m5, t5)), (11.57)

where Ψ(T H1,m0, t0) is the sub-pin flux distribution evaluated at T H1, m0, and t0. Since only one TH and neutronics

calculation is performed in each time step, it is not possible to have two sets of flux distributions Ψ(T H1,m0, t0) and

Ψ(T H1,m5, t5) simultaneously for each time step. The Ψ(T H1,m5, t5) is explicitly calculated after the transport solve

in each transport step, and an approximation for Ψ(T H1,m0, t0) is thus required. The following three approximations

are presented:

• Approximation 1 (T H0 ≈ T H1):

Σ
n(T H1,m0,Ψ(T H1,m0, t0))≈ Σ

n(T H0,m0,Ψ(T H0,m0, t0)). (11.58)

• Approximation 2 (Ψ(T H0,m0, t0)≈Ψ(T H1,m0, t0))) :

Σ
n(T H1,m0,Ψ(T H1,m0, t0))≈ Σ

n(T H1,m0,Ψ(T H0,m0, t0)). (11.59)

• Approximation 3 (Ψ(T H1,m5, t5)≈Ψ(T H1,m0, t0)) :

Σ
n(T H1,m0,Ψ(T H1,m0, t0))≈ Σ

n(T H1,m0,Ψ(T H1,m5, t5)). (11.60)

The line above the parameters highlights the approximations.

A typical LWR single pin case Figure 11.5 is used to demonstrate the accuracy of these approximations. A super-

prompt reactivity insertion with TH feedback pulse history is shown in Figure 11.6.

As shown in Figure 11.6, approximation 3 predicts the solution very well, while approximation 1 and approximation

2 overestimate and underestimate the pulse height, respectively. In approximation 1, the TH condition used is from
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Figure 11.5. Single pin case geometry to demonstrate TH feedback.

Figure 11.6. Power pulse with three approximations.

the previous step, and the Doppler feedback is delayed, resulting in a higher pulse. In approximation 2, the flux used

to weight Σn is from the previous time step, and it underestimates the pulse height as well. This is because when

the temperature increases, the absorption in the fuel increases due to the Doppler feedback effect, and the flux in the

fuel region is reduced. If the weighting flux is from the previous time step, the flux decrement due to the increase of

absorption is ignored, resulting in overestimation of the Doppler feedback and underestimating the pulse height.

Approximation 3 is a reasonable assumption since, initially, the flux distribution in Eq. (11.56) is used to homogenize

the CMFD-based cross sections rather than to directly calculate the fission source, delayed source, etc. Therefore, a

reasonable approximation to the flux is acceptable since it is only a weighting function. Secondly, the TH sub-pin

temperature distribution is global, while the material variation from m0 to m5 is local. This observation validates the

advantages of approximation 3 over approximation 2. Finally, the sub-pin distribution varies slowly with respect to

time once the TH conditions and materials are the same, meaning this should introduce only a small discrepancy for
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the time advancement from t0 to t5.

11.2.5.1 Second Level TH Coupling for 3D CMFD/EPKE

Once the feedback is applied to the model, the CMFD matrix coefficients change simultaneously. As a result, the

dynamic coefficients need to be re-evaluated with the new CMFD matrix coefficients.

11.2.5.2 Overall Flow Chart for TML with TH Feedback

The overall flow chart for TH feedback in the TML algorithm is shown in Figure 11.7, where the three vertical blocks

present the three levels of TML. The left column of blocks represents the general transport transient iteration scheme

with TH feedback, where the angular and subpin flux shapes are assumed to be accurate. The pin-wise amplitude

function of the transport solution is corrected using intermediate time steps by performing CMFD steps; this is shown

in the middle column of blocks. Similarly, the global shape function predicted by the CMFD steps are assumed to be

accurate, and the whole core amplitude is corrected by the fine EPKE steps illustrated in the right column of blocks.

Figure 11.7. Flow chart for TML with TH feedback.
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12. Simplified Thermal Hydraulic Model

12.1 Introduction

The simplified TH solver in MPACT provides a basic mechanism to apply TH feedback to the reactor. It applies this

feedback in two steps. The first step is to solve for the flow distribution through the reactor to obtain the coolant

temperature and density. When the coolant conditions are obtained, the second step is to solve for the fuel temperature

for each pin in the model. This process is outlined below.

12.2 Fluid Flow Model

The flow model in MPACT provides the basic mass-energy balance of the fluid flow through the reactor. The first

approximation involves the use of closed flow channels. A flow channel can be either a full assembly, a quarter

assembly, or the region between four fuel pins, as illustrated by Figure 12.1. The flow through the core, ṁcore, is

given as user input. The flow through each channel is determined by weighting each channel by its inlet area, Achan,

as shown in

ṁchan =

(
Achan

∑c∈channels Ac

)
ṁcore, (12.1)

where Achan is the flow area of a given channel, and the denominator is the total flow area of all channels in the core.

Once the mass flow rate at the inlet of each channel is determined, the solver sequentially progresses up the channel

and determines the enthalpy at the outlet of each node in the neutronic solution using

hout = hin +
Pn

ṁchan
, (12.2)

where hin and hout are the flow enthalpy at the inlet and outlet of a node, respectively, and Pn is the power generated by

all fuel contained in a a given node. The outlet enthalpy becomes the inlet enthalpy for the next node. This marching

procedure represents an enthalpy balance for each neutronic node, but the main pieces of information needed are the

average quantities within the node. A linear assumption is made to determine the average enthalpy inside the node of

interest:

h =
hout +hin

2
. (12.3)

CASL-U-2019-1874-001 131 Consortium for Advanced Simulation of LWRs



MPACT Theory Manual

Figure 12.1. Representative flow channels for a 3×3 assembly: full assembly (blue), quarter assembly (red), or closed

channel (green).

Once the average enthalpy is determined, equations of state are used to determine the coolant temperature and density:

Tcool = T
(
h,Psys

)
, (12.4a)

ρcool = ρ
(
h,Psys

)
, (12.4b)

where Psys is the system pressure.

The equations of state for the simplified TH model are obtained from tables in the sub-channel TH code CTF [75],

where the property of interest can be looked up as a function of enthalpy or temperature. The pressure is assumed to

be 2250 psia, the nominal operating pressure for most PWRs. The temperature ranges from 279 K to 647 K, which

encompasses the operating range of a standard PWR.

Once the coolant properties are determined for each channel, the fuel temperature model (described below) is applied

to each pin in the core.

12.3 Fuel Temperature Models

To obtain fuel and clad temperatures, two different methods can be used. The first is a 1D heat conduction solver

which can be applied to each pin in the model. The second method uses fuel temperature tables to obtain average fuel

and clad temperatures.
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12.3.1 1D Heat Conduction

The first method solves the 1D heat conduction equation in every pin in the model. The first step is to determine

the cladding surface temperature. Once the clad surface temperature is determined, heat is conducted through the

cladding, across the gap through the use of a gap conductivity, and finally through the fuel itself.

12.3.1.1 Heat Transfer from Fluid to Clad

Obtaining the clad surface temperature is achieved through the use of the Dittus-Boelter heat transfer coefficient, which

is modified to account for a regular square array of pins [87]:

Tclad,sur f = Tmod +
Pl

Asur f hmDB
, (12.5a)

hmDB =C0
k

Dh
Re0.4Pr0.2, (12.5b)

C0 = 0.042
ppin

2rclad
−0.024, (12.5c)

where Pl is the local pin power, Asur f is the surface area of the clad, hmDB is the modified Dittus-Boelter heat transfer

coefficient, k is the fluid thermal conductivity, Dh is the hydraulic diameter of the channel, Re is the Reynolds number

of the fluid, Pr is the Prantl number of the fluid, ppin is the pin pitch, and rclad is the clad outer radius. When a pin

touches multiple flow channels, hmDB is calculated for each of the channels and then harmonically averaged to obtain

a single heat transfer coefficient for the pin. Several properties of the fluid are needed for this calculation, and they are

calculated using the same tables discussed in the previous section.

12.3.1.2 Gap Conductance

A region requiring special treatment is the fuel-clad gap, a small region filled with an inert gas (typically He), providing

a relatively large thermal resistance. Many complex physical phenomona influence the gap thickness, fuel-clad contact,

and the overall thermal resistance of the gap. Consequently, the dynamics of the fuel-clad gap are difficult to model

exactly, so instead of modeling the numerous complex physical phenomena through this region, the solver instead

relies on an effective heat transfer coefficient for the gap. This value may be set by the user, or it may rely on some

semi-emperical correlation or tabulated evaluation. The equation relating the fuel pellet surface temperature to the

clad inner surface temperature is given by:

Tf uel,sur f = Tclad,in +
Pl

Asur f hgap
, (12.6)

where Tf uel,sur f is the fuel surface temperature, Tclad,in is the inner clad temperature, Pl is the local power, Asur f is the

surface area of heat transfer, and hgap is the gap conductance.
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12.3.1.3 Radial Heat Transfer Equation

The flow of heat through a medium is well understood and is modeled using the heat conduction equation,

−∇∇∇ · k (T )∇∇∇T (xxx) = q̇(xxx) , (12.7)

where k is the thermal conductivity, T is the temperature, and q̇ is the heat generation rate. This is simplified into a 1D

cylindrical equation equation for the solution here,

− 1
r

d
dr

rk (T )
d
dr

T (r) = q̇(r) . (12.8)

To discretize the 1D heat conduction equation, finite volumes are defined between a ring bounded by ri and ri+1.

Inside these volumes, the heat generation rate and the thermal conductivity are considered constant. Using these two

approximations, an analytic expression can be derived for the temperature inside a region. The temperature at ri+1 and

the heat flux at ri are used as the boundary conditions for each ring:

T (r) =− q̇
4k

r2 +C0 ln(r)+C1, (12.9a)

T (ri+1) = Tout , (12.9b)

q′i (ri) =−ki
dT
dr

. (12.9c)

These conditions result in the following equation for the temperature inside a volume:

T (r) =
q̇i

4ki

(
r2

i+1− r2)+( q̇ir2
i

2ki
− q′iri

ki

)
ln
(

r
ri+1

)
+T (ri+1) ,

ri < r < ri+1, (12.10)

where ki, q̇i, and q′i are the thermal conductivity of the fuel, volumetric heat rate, and linear heat rate in region i,

respectively. Using Eq. (12.10), the temperature on the inside of the volume, ri, can be determined. The volume-

averaged temperature of the volume:

Ti =
1

π
(
r2

i+1− r2
i

) ∫ ri+1

ri

2πrT (r)dr. (12.11)

With the equation relating the temperature at ri and the average temperature Ti to the temperature at ri+1, an iterative

scheme can be devised starting at the outside of the clad and moving inward. The equation for the cladding is simplified

because there is no heat generation:

T (r) =
q′iri

ki
ln
( ri+1

r

)
+T (ri) , ri < r < ri+1. (12.12)

Since the thermal conductivity is a function of temperature, each volume is iterated until the average temperature

converges. Once the temperature in the clad is obtained, the gap conductance model is used to obtain the fuel surface

temperature. Then the same procedure is used to solve for the average temperature in each ring of the fuel. Since the
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fuel generates heat, the linear heat rate at ri changes at each ring. The iteration procedure continues into the the fuel

until the innermost region is reached. The major difference about the center core of fuel is that ri = 0 and q′ (0) = 0

due to the symmetry of the 1D equations.

12.3.1.4 Thermal Properties

The thermal conductivity of the clad and fuel are modeled in units of W
m·K using semi-emprical correlations based on

low order polynomials. The thermal conductivity of the clad is modeled using:

kclad (T ) = 7.51+2.09 ·10−2T −1.45 ·10−5T 2 +7.67 ·10−9T 3 . (12.13)

This correlation is recommended in [31], which provides a detailed review of the experimental data which justifies this

correlation.

The thermal conductivity of the fuel does not take into account: burnup, porosity, initial plutonium loading, or gadolin-

ium loading, but instead it is only a function of temperature:

k f uel (T ) = 1.05+
2150

T −73.15
. (12.14)

12.3.2 Fuel Temperature Tables

In addition to 1D conduction calculations, MPACT can also use fuel temperature tables. These tables return average

clad and fuel temperatures as follows:

Tf uel = Tbulk +aPl +bP2
l , (12.15a)

Tclad = fcladTf uel +(1− fclad)Tf uel , (12.15b)

where Tbulk is the average moderator temperature in the neighboring channel, Pl is the linear power rate in the pin,

fclad is a constant value set to 0.2, and a and b are exposure-dependent constants found in the temperature table. The

table constants are generated externally by a fuel performance code.

12.4 Discussion

The simplified TH solver described above is useful for predicting leading order effects of TH feedback. The 1D

conduction solver can provide radial temperature distributions within each pin, and the temperature tables facilitate

depletion calculations by incorporating the fuel temperature’s dependence on exposure. However, these capabilities

are limited in accuracy and flexibility and should be used as a preliminary scoping capability. It is recommended
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that more advanced TH and fuel performance capabilities such as the subchannel TH code CTF [75] and the fuel

performance code BISON [42, 93, 37] be used for production calculations.
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13. Miscellaneous Topics

This chapter addresses topics that do not fit into any of the previous chapters, such as the module-based decomposition

scheme and rotational symmetry. Both of these topics required modifications to the various solvers (MOC, CMFD,

axial transport), so they are best discussed separately.

13.1 Module-Based Decomposition Strategy

One improvement made to the data passing schemes in MPACT was the incorporation of a module-based decompo-

sition scheme, which easily allows for more flexible and load-balanced partitions. In most production-level cases, a

quarter assembly is considered to be a module, which is the smallest repeatable geometry component. As such, the

partitions are formed on the module basis. Figure 13.1 shows an example 2D quarter-core slice with 257 modules

distributed among 4 partitions. With the old partitioning restrictions, which effectively projected a cartesian grid onto

the problem, all domains could only have one neighbor partition in each direction (N/S/E/W) and could not have mixed

boundary conditions. The data passing for the transport solvers was performed across the entire domain interface at

one time. For example, all 9 modules along the east boundary of partition 3 would be used to construct a single buffer

of data to be transmitted to partition 4.
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Figure 13.1. Quarter-core layout with four partitions using old scheme.

There are at least two ways this could have been modified to allow for more flexible partitions. One method would

be to preserve this behavior so that all modules along a parallel boundary are used to build a buffer. However, there

would be an arbitrary number of parallel boundaries for each partition. Another option, which was pursued in MPACT

because of its relative simplicity, is to allow each module to be responsible for its own data communication. This

means that each module constructs a buffer and sends it to its parallel neighbor and receives one back, as well. The

initial concern with this was that the parallel efficiency would suffer since many more smaller messages would be sent.

In practice, however, the efficiency was not observed to suffer, so this approach has been adopted throughout MPACT.

With each module handling its data communication, fairly arbitrary partitions can be obtained. Figure 13.2 shows the

comparable 4 domain partition, which allows for nearly perfect load-balancing, as all domains have 64–65 modules.

The only primary restriction at this point is that each domain must be convex. However, this restriction is imposed

because of MOC ray tracing limitations, not parallel communication itself.
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Figure 13.2. Quarter-core layout with four partitions using new scheme.

13.2 Rotational Symmetry Boundary Treatment

A number of boundary conditions are available in MPACT, but the two that are most commonly used are mirror

and rotational symmetry. This section clarifies rotational symmetry and briefly discusses the parallel communication

modifications that were necessary to enable it in MPACT.

Figure 13.3 shows the core layout and control rod bank assignments for Watts Bar Unit 1 [40]. If unfolded, the core

layout and many of the control rod banks (A-D and SA-SB) are mirror symmetric. However, it can be seen that SC

and SD are not mirror-images, but are rotationally symmetric.
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Figure 13.3. Watts Bar Unit 1 - core (left) and rod bank (right) layouts.

To allow for these to be appropriately modelled, a number of modifications were necessary to both the CMFD and

MOC solvers, particularly regarding the parallel communication. Along the north and west boundaries, which are

considered to be the quarter symmetry boundaries, special accommodations were required. With mirror symmetry,

angular fluxes in MOC on these boundaries are simply reflected to a corresponding angle. However, with rotational

symmetry, the angular fluxes must be communicated to the corresponding module and angle on the opposing face. For

example, a ray coming into contact with the northern boundary of assembly D-8 must be transmitted to the western

boundary of H-12, and the angle must be adjusted to reflect this transmission. Similar modifications were necessary

to the CMFD solver, which must now construct coupling coefficients using the flux data from its rotational partner

instead of using an albedo boundary condition as is done with mirror symmetry.

Rotational symmetry has become the default quarter symmetry boundary condition since this is most representative of

operating reactors. When eighth core symmetry exists, rotational and mirror symmetry are equivalent.
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